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Investigating dense matter relevant to 
supervovae and neutron stars

• Present constraints on the EOS. 
• Relevance to dense astrophysical objects:
• Probing asymmetric matter at ρ≤2ρ0. 
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What is known about the EOS for symmetric matter?
Main information comes from heavy ion collisions.
Monopole, isoscaler dipole resonances sample ~ 5% variations 
in density (i.e. curvature about minimum)
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Pressure and collective flow dynamics

• The blocking by the spectator matter provides a clock with which to 
measure the expansion rate. 

pressure 
contours

density 
contours



• Additional measurements were 
needed to constrain:

– Momentum dependence of mean 
fields.

– Cross-sections due to residual 
interactions.

Observables: transverse, elliptical flow. 

Constraints on symmetric matter EOS at  ρ>2 ρ0.
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Extrapolation to neutron stars

• Uncertainty due to the density 
dependence of the asymmetry 
term is greater than that due to 
symmetric matter EOS. 

• Uncertainty due to the density 
dependence of the asymmetry 
term is greater than that due to 
symmetric matter EOS. 

• Macroscopic properties:
– Neutron star radii, moments of 

inertia and central densities.
– Maximum neutron star masses 

and rotation frequencies.
• Proton and electron fractions 

throughout the star.
– Cooling of proton-neutron star.

• Thickness of the inner crust.
– Frequency change 

accompanying star quakes.
• Role of Kaon condensates and 

mixed quark-hadron phases in 
the stellar interior.
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Danielewicz et al., (2002) Symmetry term influences:

E/A (ρ, δ) = E/A (ρ,0) + δ2⋅S(ρ)        δ = (ρn- ρp)/ (ρn+ ρp) = (N-Z)/A≈1
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How can one probe the asymmetry term?
Note: observables are needed mainly to constrain the interaction
term:

Other observables will also be needed to constrain isospin
dependent in-medium NN cross sections and neutron and neutron 
and proton effective masses
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Probing the asymmetry term

• At sub-saturation densities
– Isospin diffusion 

• Tsang, PRL 92, 062701 
(2004) 

• B.Li, JINA (2005) 0.7<γ<1.1
– Asymmetry of bound residues.
– Prequilibrium n vs. p emission.
– Transverse flow (n.vs.p).
– Difference between neutron and 

proton matter radii (TJLab future 
experiment).
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– Isospin dependencies of pion

production.
– Transverse flow (n.vs.p).
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protons and neutrons.
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incompressibility.
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Central collisions: isospin fractionation
For a neutron rich system at ρ<ρ0:

asy-soft (F3) more symmetric
dense region

neutron-rich 
emitted particles

N/Zres=Ntot/Ztotasy-stiff (F1)

N/Zem≈Ntot/Ztot

EOS Residue N/Z

F_3 (asy-soft) 95/77=1.23

EOS Residue N/Z

F_1 (asy-stiff) 102/71=1.44

BUU predictions for central 124Sn+ 124Sn (N0/Z0=1.48) collisions at E/A=50 MeV

Possible observables: 
n vs. proton 
emission, asymmetry 
of residues
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• Probes the pressure from asymmetry term at saturation density and 
below.
– Some of the primordial nucleons emerge as clusters; this can be 

addressed within coalescence invariant analyses

• Probes the pressure from asymmetry term at saturation density and 
below.
– Some of the primordial nucleons emerge as clusters; this can be 

addressed within coalescence invariant analyses

Comparison of n and p spectra

soft asymmetry term
Bao-An Li et al., PRL 78, 1644 (1997)

stiff asymmetry term

• Double ratio is less sensitive to energy calibration and neutron
efficiency uncertainties.
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P-detection: Scattering Chamber

3 particle telescopes
(p, t, 3He, …)

n-TOF start detector
WU MicroBall
(b determination)
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Central 
collisions
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Coalescence invariant spectra 

• Coalescence invariant analysis decreases sensitivity to cluster production 
model uncertainties:
– Approach consistent with successful flow analyses.
– Permits accurate comparisons to theory at E/A>30 MeV
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Data : Famiano et al, preliminary
BUU: Li, Ko, & Ren PRL 78, 1644, (1997)

• Comparisons neglect 
– momentum 

dependence of 
mean field 
potential.

– Uncertainties due 
to isospin
dependent NN 
cross sections 
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Summary

• We have two promising observables to probe the 
asymmetry term:
– Isospin diffusion
– Comparisons of neutron and proton emission rates and flow.

• We expect that three quantities need to be constrained:
– density dependence: started
– momentum-isospin dependence: started
– isospin dependent in-medium cross sections: next

• We have promising other observables to constrain these 
quantities:
– New neutron area in N2 vault at the CCF.

• Other factors:
– uncertainty in the impact parameter.
– role of fluctuations.
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Future plans: S2 reconfiguration

• A program of neutron measurements in the S2 vault was favorably 
reviewed by the program advisory committee at its latest meeting.

• Collaboration WMU (Famiano), MSU (Lynch, Tsang) and WU 
(Sobotka, Charity).

• Objectives are to constrain S(ρ), m*
n,, m*

p, σpp and σnp. 
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Coalescence invariant analyses

• Assumptions: The modification of nucleon momenta by 
the cluster production is small compared to the nucleon 
momenta themselves. 
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Effects of the in-medium nucleon-nucleon cross sections
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-550 < Kasy < -450 MeV

0.7 < γ < 1.1 in fitting
Esym=32(ρ/ρ0)γ



• The density dependence of 
asymmetry term is largely 
unconstrained.

• Pressure, i.e. EOS is rather 
uncertain even at ρ0.
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Isospin Dependence of the Nuclear 
Equation of State

E/A (ρ,β) = E/A (ρ,0) + δ2⋅S(ρ)

δ = (ρn- ρp)/ (ρn+ ρp) = (N-Z)/A
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PAL: Prakash et al., PRL 61, (1988) 2518.
Colonna et al., Phys. Rev. C57, (1998) 1410.

Brown, Phys. Rev. Lett. 85, 5296 (2001)
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