β-decay measurements of r-process nuclei

Fernando Montes Michigan State University National Superconducting National Laboratory Joint Institute for Nuclear Astrophysics JINA

Supernova 1994D in NGC 4526

Nuclear physics in the r-process

Solar r-process abundances (dots) and abundances using the classical r-process model based on the ETFSI-Q (solid line) mass model and ETFSI-1 (dashed line) mass model

S NSCI

Implant and decay station: β decay studies

β-Decay Studies Near the N=82 Shell Closure

Calculated isotopic abundances just before freezeout

Branchings modify final abundance before freezeout

Abundance ratio ¹²⁰Sn/¹¹⁹Sn is increased by 60% but.....

- Nuclear physics is needed to make full use of astronomical observations and to experimentally constrain r-process models
- Experimental nuclear data (and good theoretical models) are needed
- Good agreement between predictions and experimental values (less than a factor of 3) in this mass region
- Except ¹²⁰Rh P_n value: not explained by quadrupole deformation or mass uncertainty. Incorrect placement of the dominant GT feeding $(vg_{7/2} \rightarrow \pi g_{9/2})$
- Effect in the r-process? Isotopic ratio ¹²⁰Sn/¹¹⁹Sn

Collaboration

Michigan State University

Fernando MontesAlfredo EstradePaul HosmerSean LiddickPaul ManticaColin MortonW. F. MuellerMichelle OuelletteEric PellegriniPeter SantiHendrik SchatzAndreas StolzBryan Tomlin

Univ. of Maryland/ANL W.B. Walters Univ. of Mainz O. Arndt, K.-L. Kratz, B. Pfeiffer Pacific Northwest Laboratory P. Reeder Notre Dame A. Aprahamian, A.Woehr

e NSCL is funded in part by the titional Science Foundation and chigan State University. e Joint Institute for Nuclear trophysics (JINA) is a NSF ysics Frontiers Center.

Over-prediction of the experimental $T_{1/2}$ for N≥74 Pd isotopes... Uncertainty in the input parameters???

1. ε_2 does not explain it..

2. An increase in the Q_{β} value better reproduce the experimental results..

• Large Q_b value ¹³⁰Cd decay best reproduced by mass models with N=82 shell quenching (Dillmann et al. PRL 91 (2003) 162503)

• Systematic Variation of E(2⁺) for ¹²⁰Pd: hints to the absence of shell quenching (Walters et al. Phys. Rev. C (2004) 034314) T_{1/2} and Pn <u>rough</u> indicators of nuclear structure ...

Increase in Q_β consistent with a weakening of the neutron shell-closure seen by N≥74 Pd but.....

