Measurement of β-delayed α spectrum of ¹⁶N with a new technique (1)

M. Notani, R. C. Pardo, K. E. Rehm, X. D. Tang, J. Greene, A. Hecht, D. Henderson, R. V. F. Janssens, C. L. Jiang, E. F. Moore, J. P. Schiffer, S. Sinha, M. Paul, R. E. Segel, L. Jisonna, A. Wuosmaa, A. Champagne, and C. Brune

1.

Motivation --- ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction

2. β -delayed α decay of ¹⁶N

3. Production of ¹⁶N beam

4. Slowing down the ¹⁶N beam

Motivation

- ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction
- Significant effects on ¹²C/¹⁶O ratio produced by helium burning, subsequent nucleosynthesis and supernova explosion
- Required cross section for energies of about 0.3 MeV

Direct measurement only for $\geq 1 \text{ MeV}$

Extrapolation to the lower energies using R- or Kmatrix theories, but complicated by two subthreshold states, $J^{\pi}=1^{-}$ and 2^{+} .

β-delayed α decay of ¹⁶N → ¹⁶O

 E_{α}

Interference peak

J. Humblet et al., Phys. Rev. C44, 2530(1991)

<u>rievious measurements of the p-</u>

delayed

- · Mainz (1969-1974) α gecay of ¹⁶N
- Yale (1993-1997) Si 50 μm
- Seattle (1994-1995) Si ? μm
- TRIUMF (1993-1997) Si 11-16 μm

Goal:

- •No contamination from ^{17,18}N
- •Thin targets
- •Setup with different detectors which are insensitive to β 's

Experiment

- Beam production
- •Stopping of the ¹⁶N beam
- Detector
- Energy calibration
- Backgrounds
- Preliminary results

Radioactive Beam Production

 ^{15}N 82 MeV

Experimental setup for the study of the β -delayed α decay of ¹⁶N

Slowing down the ¹⁶N particles

Event rate ~ 3x10⁶/s x 10⁻⁵ x 0.055 x 0.38 = 38 counts/min