²⁵Al + *p* Elastic Scattering at RIKEN

Jonty Pearson

TRIUMF

Frontiers 2005

Contents

- Aim
- Motivation
- RIKEN and CRIB
- Experimental technique
- Analysis so far

Aim

• To measure ${}^{25}\text{Al} + p$ elastic scattering and use *R*-matrix theory to fit excitation function to obtain nuclear parameters such as E_x , Γ and J^{π} of ${}^{26}\text{Si}$ levels

Motivation

- ²⁶Al in explosive hydrogen burning
 - For ONe novae,
 ²³Na(p,γ)²⁴Mg, ²⁵Al(p,γ)²⁶Si and ^{26g}Al(p,γ)²⁷Si affect
 ²⁶Al yield
- 26Al production
 - Faster ${}^{25}Al(p,\gamma) \rightarrow less$ ${}^{26g}Al, as {}^{26}Si decays$ through ${}^{26m}Al 100\%$ to ${}^{26}Mg$

- ²⁶Si spectroscopy more level-parameter information is needed
- Constrain mirror assignments between low-lying levels in ²⁶Si and ²⁶Mg

* : D.W.Bardayan et al. PRC. Vol.65, 2002 **: J. A. Caggiano et al. PRC. Vol.65,2002

RIKEN

- RIKEN Wako campus located just outside Tokyo
- Experiment
 performed at the
 Centre for Nuclear
 Study (CNS) using
 the CNS Radioactive
 Ion Beam (CRIB)
 facility from June
 30th to July 4th 2005

CRIB

- ²⁴Mg⁸⁺ primary beam produced in ECR ion source, 1.6×10¹¹ pps
- ²⁵Al secondary beam produced at F0 target using 2 H(24 Mg,*n*) 25 Al reaction, 5×10⁵ pps

Chamber Setup

- Used 3 out of 4 installed ΔE -E telescopes
- Used a NaI gamma-array with 10 detectors
- Thick targets

Experimental Running

- ~2-5×10⁵ pps ²⁵Al @ 3.426 MeV/u on target
- Thick CH₂ targets, 6.5 mg/cm² were used for reaction runs
- Scanned ~3.3 MeV in centre-of-mass, maximum proton energy ~12.5 MeV, minimum detectable proton energy ~3 MeV
- 9.45 mg/cm² C target was used for background run

Experimental Running

- 40 hours spent tuning primary and secondary beams to scattering chamber
- 55 hours running 25 Al beam + CH₂ target
- 4 hours running ²⁵Al beam + C target
- 12 hours with ¹H beam for calibrating silicon detectors at 2, 5, 9, 14 MeV, and calibrating target thickness at 6, 9, 14 MeV
- Silicon detector calibration also with 3α -source
- NaI detector calibration with ²²Na source

Beam Identification

• Beam species ID with PPAC, ²⁵Al cut made on RF

SSD-PSD E- ΔE Spectrum

ΔE Detector

• Proton energy spectrum and hit pattern

Next steps

- Lots of calibration, background subtraction
- Change to use centre-of-mass energies
- Bin excitation function for angular ranges
- Use *R*-matrix theory to fit excitation curves

Acknowledgements

NS Graduate School of Science University of Tokyo

S. Kubono, H. Yamaguchi, J. He, A. Saito, G. Amadio, H. Fujikawa, M. Niikura, Y. Togano, Y. Wakabayashi

RIKEN

S. Nishimura

CAUL CHUNG-AND

J. Y. Moon. J. H. Lee

J. Kim *Catania, Sicily* S. Cherubini, R. Pizzone, M. La Cognata

Done.