Nucleosynthesis of Mg Isotopes in AGB Stars

Elizabeth Strandberg University of Notre Dame

Goal: Find new resonances and determine resonance parameters

Astrophysical Motivation: SiC Grains

- Grains expelled from previous generations of AGB stars are found in meteorites in our solar system
- These grains can contain pristine material from the cloud out of which the solar system formed
- These grains contain anomalously large amounts of the neutron-rich Si isotopes

SiC meteorite grain (L. Nittler)

Astrophysical Motivation: AGB Stars

AGB stars have an onionlike structure, with nuclear burning occurring the hydrogen and helium shells

In the later part of the AGB phase, the He-shell undergoes thermal pulses, during which many nuclear reactions can take place:

 $^{24}Mg(\alpha,\gamma)^{28}Si$

 ${}^{12}C(p,\gamma){}^{13}N(\beta+\nu){}^{13}C(\alpha,n){}^{16}O$

²²Ne(α ,n)²⁵Mg(α ,n)²⁸Si

 $^{24,25,26}Mg(n,\gamma)$

^{28,29,30}Si(n,γ)

Previous Work

The lowest energy resonance published for this reaction occurs at $E_{\alpha} = 1358$ keV, but the Gamow window is around 500keV

P.B. Lyons, Nucl. Phys. A130 (1969) 25

There are several states in the ²⁸Si compound nucleus that are favorable for formation by alpha capture in the $E_{\alpha} = 1.0$ to 1.5 MeV range

Level Scheme

Alpha capture on a J = 0nucleus such as ²⁴Mg must lead to a natural parity state in the compound nucleus

J ^π	E _{ex} (MeV)	E _α (lab) (keV)
2+	10.916	1087
2+	10.944	1120
2+	10.951	1130
	10.994	1178
2-4+	11.079	1277

Experimental Challenges

The cross section decreases exponentially with decreasing projectile energy

H. Kräwinkel et.al., Z. Phys. A304 (1982) 307

To find new resonances, we need

- 1. Durable targets with as much ²⁴Mg as possible
- 2. An efficient detection system

Target Development

- 1. Mg implanted on tantalum backing Mg/Ta ratio was not satisfactory
- 2. Mg evaporated on tantalum backing Yield was high, but backing was blistered by beam
- 3. Mg evaporated on copper backing

Yield was high and target showed no damage

Detection System

Coincidence Mode

By operating the detection system in coincidence mode, the room background is reduced by ~3 orders of magnitude!

KN Accelerator

The alpha beam was produced by the 4MV KN Van de Graaff accelerator at Notre Dame

We ran for two weeks with alpha beam currents up to $55\mu A$

Results of Experimental Run

Yield curve mapped using transition from first excited state to ground state in ²⁸Si

Verification of Coincidence Mode

6000

4000

Without the coincidence gate, the gamma ray of interest is barely seen

TAC and Nal Gated Ge Sum

With the appropriate gates, background lines disappear and the reaction gamma ray is clearly visible

Ungated Ge Sum

Resonance Strength ωγ

E_{α} (keV)	Current ωγ (lower limit)	Previous Experiments
1350	1.3 ± 0.3 meV	1.9 ± 0.6 meV (Lyons 1969)
1277	56 ± 12 μeV	No previous value
1178	45 ± 10 μeV	200 ± 60 μeV (Buchmann, unpublished)

Since branching ratios are not yet known, $\omega\gamma$ was calculated by assuming all decays include the 1779keV gamma, thus we arrive at a lower limit

Future Plans: Second Experimental Run

4π Nal + 35% HPGe Setup

The $\sim 4\pi$ Nal detector can be used as a Compton shield. With this setup, we will observe the transition from E_{ex} to the ground state.

This will compliment the previous experiment, in which we observed the transition from the first excited state to the ground state.

Collaborators

Advisors:

Michael Wiescher and Joachim Görres

Notre Dame Students, Postdocs and Staff: Mary Beard, Aaron Couture, Michael Lamey, PJ LeBlanc, Hye Young Lee, Shawn O'Brien, Annalia Palumbo, Barbara Truett, Claudio Ugalde, Manoel Couder, Wolfgang Rapp, Wanpeng Tan, Larry Lamm, Brad Mulder, Ed Stech

Other Collaborators:

Kent Scheller (University of Southern Indiana)

Funding for this work was provided by the National Science Foundation

