Shell Model for Heavy Deformed Nuclei

Yang Sun

UNIVERSITYOF NOTRE DAME

Frontiers 2005

 MSU Aug 20-22
Advances in nuclear shell model

1 Two major directions in developing shell model:

- Take advantage of growing computer power and employ sophisticated diagonalization algorithms to improve shell model code.
- Seek good truncation schemes to construct smaller bases that contain important correlations as much as possible.
1 Projected shell model uses deformed basis and builds its bases using angular momentum projection. It belongs to the second category.
- K. Hara and Y. Sun, Int. J. Mod. Phys. E4 (1995) 637
- Y. Sun and C.-L. Wu, Phys. Rev. C68 (2003) 024315

Deformed basis vs spherical basis

1 Most nuclei are deformed. To describe a deformed nucleus, a spherical shell model needs a huge configuration space.
1 J.P. Elliott was the first to take the advantage of a deformed many-body basis and developed the SU(3) Shell Model.
1 For heavy nuclei, the original Elliott $\operatorname{SU}(3)$ scheme is no longer valid. One can use generalized SU(3) schemes if such a symmetry exists. Or generally, one can start from a deformed basis and apply angular momentum projection numerically.

Deformed basis vs spherical basis

1 Rotational spectrum in ${ }^{48} \mathrm{Cr}$

- Exp. data: Brandolini et al, NPA 642 (1998) 387
- PSM and GCM: Hara, Sun and Mizusaki, PRL 83 (1999) 1922. Deformed basis with angular-momentum projection; Basis states ~ 50
- pf-SM: Caurier et al, PRL 75 (1995) 2466. Conventional M-scheme spherical shell model; Basis states ~ 2 million

The projected shell model

1 Take a set of deformed (quasi)particle states (e.g. solutions of HF, HFB or HF + BCS).
1 Select configurations built from qp vacuum + a few qp states near the Fermi level.
1 Project them onto good angular momentum (and if necessary, also parity, isospin, particle number) to form a basis in laboratory frame.
1 If necessary, superimpose configurations belonging to different qp sets (the GCM-concept).
1 Diagonalize a two-body Hamiltonian in this basis.

The projected shell model

1 Wavefunction:

$$
\psi_{M}^{I}=\sum_{\kappa} f_{\kappa} \widehat{P}_{M K_{\kappa}}^{I}\left|\phi_{\kappa}\right\rangle
$$

with the projector: $\quad \hat{P}_{M K}^{I}=\frac{2 I+1}{8 \pi^{2}} \int d \Omega D_{M K}^{I}(\Omega) \hat{D}(\Omega)$
1 The eigenvalue equation: $\quad \sum_{\kappa^{\prime}}\left(H_{\kappa k^{\prime}}^{I}-E N_{\kappa k^{\prime}}^{I}\right) f_{\kappa^{\prime}}=0$ with matrix elements: $\quad H_{\kappa \kappa^{\prime}}^{I}=\left\langle\phi_{\kappa}\right| \hat{H} \hat{P}_{\kappa \kappa}^{I}\left|\phi_{\kappa^{\prime}}\right\rangle \quad N_{\kappa \kappa}^{I}=\left.\left\langle\phi_{\kappa}\right|\right|_{\mathcal{P}_{\kappa}^{\prime} \mid} ^{I}\left|\phi_{\kappa^{\prime}}\right\rangle$

1 The Hamiltonian is diagonalized in the projected basis $\left\{\hat{P}_{M K}^{I}\left|\phi_{\kappa}\right\rangle\right\}$

Examples of the PSM calculation

1 Proton-rich nuclei near the $N=Z$ line

Examples of the PSM calculation

I Neutron-rich nuclei extended to the ${ }^{132} \mathrm{Sn}$ region

Stellar weak interaction rates

1 Recent spherical shell model calculations for weak interaction rates:

- A. Brown, Prog. Part. Nucl. Phys. 47 (2001) 517
- K. Langanke and G. Martinez-Pinedo, Rev. Mod. Phys. 75 (2003) 819

Calculations were restricted for medium-light nuclei.
1 It is a challenge to perform a shell-model calculation for heavy, deformed nuclei beyond the fp-shell and to use the resulting wavefunctions to calculate stellar weak interaction rates.

Stellar weak interaction rates

1 Gamow-Teller or Fermi rate $B(G T / F) \sim\left\langle\psi_{f}\right| \hat{O}_{G T / F}\left|\psi_{i}\right\rangle^{2}$
1 Wavefunction $\quad \psi_{M}^{I}=\sum_{\kappa} f_{\kappa} \widehat{P}_{M K_{K}}^{I}\left|\phi_{\kappa}\right\rangle$
1 E-e system $\left.\left|\phi_{e}\left(\varepsilon_{e}\right)\right\rangle=\left\{\varepsilon_{e}\right\rangle, b_{v}^{+} b_{v}^{+}\left|\varepsilon_{e}\right\rangle, b_{\pi}^{+} b_{\pi}^{+}\left|\varepsilon_{e}\right\rangle, b_{v}^{+} b_{v}^{+} b_{\pi}^{+} b_{\pi}^{+}\left|\varepsilon_{e}\right\rangle, \cdots\right\}$
1 O-o system $\left|\phi_{o}\left(\varepsilon_{o}\right)\right\rangle=\left\{a_{\nu}^{+} a_{\pi}^{+}\left|\varepsilon_{o}\right\rangle, a_{\nu}^{+} a_{v}^{+} a_{\nu}^{+} a_{\pi}^{+}\left|\varepsilon_{o}\right\rangle, a_{\nu}^{+} a_{\pi}^{+} a_{\pi}^{+} a_{\pi}^{+}\left|\varepsilon_{o}\right\rangle, \cdots\right\}$
1 Overlap matrix element

$$
\left\langle\phi_{o}\left(\varepsilon_{o}\right)\right| \hat{O} \hat{P}_{K_{a} K_{b}}^{I}\left|\phi_{e}\left(\varepsilon_{e}\right)\right\rangle \sim \int d \Omega D_{K_{a} K_{b}}^{I}(\Omega)\left\langle\phi_{o}\left(\varepsilon_{o}\right)\right| \hat{O} \hat{R}(\Omega)\left|\phi_{e}\left(\varepsilon_{e}\right)\right\rangle
$$

Summary

1 Angular momentum projection is an efficient way to truncate shell model space to perform shell model calculations in a larger space. The method can be applied to any size of nuclear system without dimension problems. The results can usually be interpreted using simple physical terms.
1 The projection technique has been well developed. Projected shell model is an established example. Using the projected shell model wavefunctions to calculate weak interaction rates is in progress.

