The Astrophysical Conditions of Classical Nova Nucleosynthesis

Dean Townsley

JINA, The University of Chicago

Classical Novae

WD accreting steadily from a low mass MS star = Cataclysmic Variable (CV) $\implies P_{orb} = 1.5 - 6$ hours

- short timescale thermonuclear outburst event, over in \sim a year
- Iong recurrence time, $\sim 10^4$ -10⁷ years
- a single binary will have many thousands of oubursts over its life each ejecting $M_{\rm ej} \sim 10^{-4} M_{\odot}$ into the ISM

Contribution of Novae to the ISM

How is the nova contribution to an abundance in the ISM calculated?

$$X_{i,\text{Nova}} = \frac{1}{M_{\text{gas}}} \int \frac{M_{\text{ej}}}{t_{\text{rec}}} X_i \Phi(M_{\text{WD}}, \langle \dot{M} \rangle) \ dM_{\text{WD}} d\langle \dot{M} \rangle dt$$

All the factors depend on $M_{\rm WD}$ and $\langle \dot{M} \rangle$

- $M_{\rm ej}$ Nova ejected mass
- $t_{\rm rec}$ Nova recurrence time
- X_i Abundance in ejecta
- Φ distribution of H Accreting WDs in $M_{\rm WD}$ and $\langle \dot{M} \rangle$

In this talk: What is $\Phi(\langle \dot{M} \rangle)$

- Binary evolution Angular momentum loss
- Predicted $\langle \dot{M} \rangle$ and observational evidence
- Obital period distribution of novae rate
- distribution of nova $\langle \dot{M} \rangle$
- Abundance variations

Angular Momentum Loss

 \dot{J} determines evolution of compact binary

Interrupted Magnetic (Wind) Braking?

 $M_{
m WD}\,=\,0.7 M_{\odot}$, Howell, Nelson, & Rappaport 2001, ApJ 550, 897

Equilibrium $T_c \to M_{ign}, T_{eff}$

 $X_3 =$ mass fraction of ³He in accreted material

$T_{\rm eff}$ vs. $P_{\rm orb}$

Low disk state systems (DN, SW Sex)
 Magnetics

Townsley & Gänsicke, in preparation

Theory range shown: 0.6-1.0 M_{\odot}

Factor of $\sim 10 \; \langle \dot{M} \rangle$ contrast across period gap confirmed

Current Mag. Braking prescription matches well with DN at 4-5 hours

Separate population of high $\langle \dot{M} \rangle$ at 3 hours?

Magnetic CVs above gap near Grav. Radiation prediction – WD magnetic field preventing magnetic braking?!

(Li, Wu, & Wickramasinghe 1994, MNRAS, 268, 61)

Classical Nova $P_{\rm orb}$ **Distribution**

Theory curve uses Interrupted Magnetic Braking for $\langle \dot{M} \rangle (P_{\rm orb})$ and population Φ_P (Howell, Nelson, Rappaport 2001, ApJ 550, 897)

$$\nu_{CNP} = \Phi_P \frac{\langle \dot{M} \rangle}{M_{\text{ign}}}$$

Data from Ritter & Kolb 2005 CV catalog

- Supports a factor of > 10 drop in $\langle \dot{M} \rangle$ across gap
- Consistent with idea that CVs evolve across the gap
- Possible population of magnetic systems filling in gap
- Ignores selection effects hard to quantify

Classical Nova $\langle \dot{M} \rangle$ **Distribution** $\Phi(\langle \dot{M} \rangle)$

- Most observed Novae have "high" $\langle \dot{M} \rangle \sim 10^{-9} M_{\odot} {\rm \ yr^{-1}}$
- Similar amount of matter is ejected from Novae with $\langle \dot{M} \rangle \sim 10^{-9} M_{\odot} \text{ yr}^{-1}$ and $\sim 10^{-10} M_{\odot} \text{ yr}^{-1}$.
- Character of ignition very different for these two
 - direct Carbon or ³He trigger
 - *p-p* heated deep envelope trigger
- Features of Novae which depend on $\langle \dot{M} \rangle$ are expected to have a bimodal character.
- The Porb distribution below 6 hours shows initial indications of this.

Abundance variation with $P_{\rm orb}$

Abundances: Gehrz, Truran, Williams, Starrfield 1998, PASP, 110, 3

 $P_{\rm orb}$: Ritter & Kolb 2005 CV catalog

Need More data!

Only one other nova with well-measured abundances and $P_{\rm orb} < 2$ hours.

Abundances in nova ejecta

Due to difference in $\langle \dot{M} \rangle$ above and below gap, nova should demonstrate a bimodal character in properties including amount of nuclear processing.

- Difficult to observe due to rarity of events of the low $\langle \dot{M} \rangle$ variety.
- Most observed novae are of the high $\langle \dot{M} \rangle$ variety, while the two types may contribute nearly equally to nova ejecta in the ISM.
- Past dynamic nova calculations have typically used T_c higher than $T_{c,eq}$, not fully exploring these low $\langle \dot{M} \rangle$, highly degenerate events.
- Measured P_{orb} systems provide a great opportunity for testing nova outburst calculations, we think we know $\langle \dot{M} \rangle$ and T_c .

Accreting WD Envelope Envelope thermal time

 $\sim 10^3 {
m yr}$

Infall energy deposited near surface and quickly radiated away

Interested in energy deposited deep in the envelope

Accreting WD Envelope quasi-static envelope Λ $\begin{array}{ll} L_{\rm env} & \sim gh \langle \dot{M} \rangle \\ & \sim \langle \dot{M} \rangle \frac{kT_c}{\mu m_p} \end{array}$ \geq H/He $M_{\rm acc}$ So actually: \mathbb{V} $T_{\text{eff}}(M, \langle \dot{M} \rangle, M_{\text{acc}}, T_c)$ **C/O** $M_{\rm ign}(M, \langle \dot{M} \rangle, T_c)$

T_c and Classical Nova Ignition

Conditions at base of H/He:

Evaluating envelope stability:

$$\frac{\partial \epsilon_N}{\partial T} = \frac{\partial \epsilon_{\text{cool}}}{\partial T}$$

What thermal state (T_c) corresponds a given $\langle \dot{M} \rangle$?