

Notre Dame workshop, July 14-15, 2005

Betty Tsang The National Superconducting Cyclotron Laboratory Michigan State University

Density dependence of symmetry energy

A. Ono et al. PRC 68,051601 (2003)

Observable currently explored in Heavy Ion Collisions: Central collisions (isospin fractionation) n/p ratios; $\langle E_n \rangle$, $\langle E_p \rangle$ Isotope distributions

Peripheral Collisions Isospin diffusion

Isotope Distribution Experiment *MSU, IUCF, WU collaboration* Sn+Sn collisions involving ¹²⁴Sn, ¹¹²Sn at E/A=50 MeV

Miniball + Miniwall 4 π multiplicity array Z identification, A<4

LASSA Si strip +CsI array Good E, position, isotope resolutions

Xu et al, PRL, <u>85</u>, 716 (2000)

Measured Isotopic yields

Isoscaling from Relative Isotope Ratios

 $R_{21}(N,Z) = Y_2(N,Z) / Y_1(N,Z)$

$$\propto e^{\alpha N + \beta Z}$$

In statistical and dynamical models, α is related to the symmetry energy and asymmetry of the emitting source

 $\alpha = 2C_{sym}[\Delta\delta(1-\delta)]/T$

Tsang et al, PRL, <u>86</u>, 5023 (2001) MB Tsang et al. PRC 64,054615

Symmetry energy from AMD

A. Ono et al. PRC 68,051601 (2003)

 α depends on symmetry term interactions

Problems with Central Collisions

AMD Calculations : Ca+Ca; b=0 fm Data: Ni, Ca, Fe, Sn, p, He collisions; b>>0 fm

Effects of sequential decays – y axis?
Determination of asymmetry of fragmenting system – x axis

Observables in Peripheral HI collisions

Isospin diffusion in asymmetry collisions ${}^{124}Sn + {}^{112}Sn$ Symmetry energy will act as a driving force to transport the n or p from projectile to target or vice versa via the neck region.

t = 10 fm/c

t = 20 fm/c

t = 30 fm/c

 $t=70 \mathrm{fm/c}$

t = 80 fm/c

t = 90 fm/c

t=100 fm/c

 $t = 110 \mathrm{fm/c}$

t = 120 fm/c

t = 130 fm/c

t = 140 fm/c

t = 150 fm/c

Density for $(\rho/\rho_0)^2$ and 6.6 fm Impact Parameter

Observables in HI collisions

Peripheral Collisions Isospin diffusion 124Sn+112Sn

Symmetry energy will act as a driving force to transport the n or p from projectile to target or vice versa via the neck region.

N/Z diffusion? Coulomb? Pre-equilibrium? Theoretical observable?

Isospin Diffusion

P

No isospin diffusion 1.0

Complete 0.0 mixing

No isospin-1.0 diffusion

Difference between projectile and target spectator asymmetry, $\delta = (N-Z)/(N+Z)$, measures the isospin diffusion which can be used to extract information about symmetry energy.

 $E(\rho, \delta) = E(\rho, \delta=0) + E_{sym}(\rho, \delta) \delta^2$

Assume $E_{sym}(\rho) \propto (\rho / \rho_0)^{\gamma}$

Effect of symmetry terms on isospin diffusion

LiJun Shi ((2004)

 \triangleleft

• Diffusion occurs within ≈ 120 fm/c.

Tsang et al. PRL 92, 062701(2004)

• Projectile and target residues do not come to isospin equilibrium at E/A=50 MeV.

Comparisons to data

Tsang et al. PRL 92, 062701(2004)

- Diffusion occurs within ≈ 120 fm/c.
- More mixing with soft $S(\rho)$ - consistent with large E_{sym} at $\rho < \rho_0$.
- Less mixing with stiff $S(\rho)$.

- *Explicit secondary decay correction gives same result.*
- Stiff $S(\rho)$ favored.
- *Momentum-isospin dependence?*

Constraints on symmetry term in EOS from isospin diffusion

Constraints on symmetry term in EOS from isospin diffusion

¹¹²Sn+¹²⁴Sn; E/A=50 MeV

Emission patterns of charged particles e.g. ⁷Li

Observable: $V_{//}$ vs. V_{\perp}

Acceptance: No detector coverage around beam & detector energy thresholds

Emission from projectile and target residues would create ridges from Coulomb repulsions.

Emission patterns of ⁷Li & ⁷Be from ¹²⁴Sn+¹¹²Sn; E/A=50 MeV

Isospin transport observable

Y(⁷Li) enhanced from ¹²⁴Sn

Y(7Be) enhanced from ¹¹²Sn

Isospin transport observable

Y(⁷Li) enhanced from ¹²⁴Sn

Y(7Be) enhanced from ¹¹²Sn

Ratio Y(⁷Li)/Y(⁷Be) Mainly dominated by Coulomb

What about isospin transport ?

Isospin Transport Ratio

$$R_i = \frac{2x_{AB} - x_{AA} - x_{BB}}{x_{AA} - x_{BB}}$$

Rami et al., PRL, 84, 1120 (2000)

 x_{AB} =experimental or theoretical isospin observable for system AB $x_{AB}=x_{AA} \rightarrow R_i = 1.$ $x_{AB}=x_{AB} \rightarrow R_i = -1.$

Coulomb & other effects are "cancelled" The P_T dependence is weak. R_i varies with y

Summary

- Isospin diffusion provides a robust sensitivity to the density dependence of the asymmetry term.
 – impact parameter and rapidity dependence.
- Need other observables such as n/p ratios, n/p differential flow see BaoAn Li's list.
- quantities to be constrained in calculations:
 - density dependence:
 - momentum-isospin dependence:
 - isospin dependent in-medium cross sections:
- Other factors:
 - role of fluctuations.