Measurement of inelastic alpha scattering on ¹⁴O

RIKEN Hidetada Baba

Collaborators

RIKEN

- H. Baba, T. Motobayashi, H. Akiyoshi, N Aoi, T. Gomi, Y. Higurashi, S. Michimasa,
 T. Minemura, H. Sakurai, S. Takeuchi, K. Yamada, Y. Yanagisawa
- Rikkyo University

- K. leki, S. Kanno, M. Kunibu, Y.U. Matsuyama, M. Serata, E. Takeshita
- CNS, University of Tokyo
 - S. Shimoura, A. Saito, S. Kubono
- University of Tokyo
 - H. Iwasaki, K. Ue
- Tohoku University
 - N. Iwasa (Tohoku University)
- Tokyo Institute of Technology
 - T. Nakamura
- Kyushu University
 - T. Teranishi
- KEK
 - N. Imai

Studies at RIKEN

Compressional modes in unstable nuclei

- Year 2000, ¹⁴O(α,α')
 - This work, Rikkyo Univ., Tokyo Univ., RIKEN
- Recently, ISGMR by (p,p')
 - Measure recoil proton
 - Tohoku Univ.
- Future, at new facility RIBF
 - ISGMR/GDR for medium heavier n-rich nuclei
 - EOS

Inelastic α scattering on ^{14}O at 60 A MeV

- Experimental methods
 - Inverse kinematics
 - Liquid helium target
 - Invariant-mass method
 - Detector acceptance
 - Multiple decay particles
 - γ ray from decay particles
 - Multipole decomposition analysis
 - DWBA, optical and transition potentials

Isoscalar strengths for light stable nuclei

 $^{12}C(\alpha, \alpha')$ at 60 A MeV

- B. John et. al., Phys. Rev. **C68** (2003) 014305
- ¹⁶O(α,α') at 60 A MeV
 - Y.-W. Lui et. al., Phys. Rev. **C64** (2001) 064308
- Fragmented distribution

Light unstable nucleus ¹⁴O

Z=8, N=6

- Sphelical
- Measured decay channel
 - ¹³N + p
 - ¹²C + p + p
 - $^{12}C_1^* + p + p$
 - ¹⁰C + α
 - $^{10}C_1^* + \alpha$
- 6.6 MeV 11.0 MeV 10.1 MeV 13.5 MeV

4.6 MeV

Invariant-mass method

- In order to obtain excitation energy
- E_{decay} is calculated from momentum vectors of decay particles

Decay energy

$$E_{decay} = \sqrt{\left\{\sum_{i} (m_i + T_i)\right\}^2 - \left\{\sum_{i} \mathbf{p}_i\right\}^2} - \sum_{i} m_i$$

$$E_x = E_{decay} + E_{threshold}$$

$$\downarrow$$
Excitation energy
of decay channel

Experimental setup

Secondary beam

- Secondary ¹⁴O beam was produced by projectile fragmentation reaction of ¹⁶O and ⁹Be, and selected by RIKEN RIPS
- Purity = 55 %
- Rate = 50 kcps

Plastic scintillator hodoscope

Outgoing particle detection

Acceptance (Outgoing particle)

Monte Carlo simulation for every decay channel

Multiple particle decay

Edecay

[MeV]

[MeV]

Edecay

Decay sequence of 7.77 MeV 2+

Almost 100 % sequential decay

- ${}^{14}O > {}^{13}N + p > {}^{12}C + p + p$
- ${}^{14}\text{O} > {}^{12}\text{C} + {}^{2}\text{H} > {}^{12}\text{C} + p + p$

Multiple particle decay

Gamma ray detection

Gamma ray from decay particle

¹¹C + ³He decay channel

Many γ rays exist, it is difficult to discriminate every energy level completely

Q-value spectrum

Poor resolution for Q-value

- α particle is very tight
- It is possible to discriminate break up channel of α particle

Result - Excitation energy spectrum

DWBA analysis

- In order to deduce isoscalar multipole strength
 - Multipole decomposition analysis with the DWBA calculation (MD analysis)
- DWBA calculation for 60 A MeV α
 - Single-folding Model for optical and transition potentials was employed
 - A. Kolomiets et al., Phys. Rev. **C61** (2000) 034312
 - G.R. Satchler, Nucl. Phys., A472 (1987) 215
 - M.N. Harakeh el al., Phys. Rev. C23 (1981) 2329
 - Computer code ECIS97 was used
 - J. Raynal, unpublished

DWBA calculation for 5.17 MeV 1⁻

Multipole Decomposition Analysis

 Discriminate multipole components from angular distribution

Result - Decomposed cross-section

EWSR fraction for monopole and dipole

Summary

Inelastic α scattering on ¹⁴O at 60 A MeV

- Excitation energy spectrum was obtained with wide energy range using invariant-mass method
- With some difficulties
- Isoscalar monopole and dipole strengths were deduced
 - Multipole decomposition analysis
 - Inelastic α scattering in inverse kinematics can obtain isoscalar multipole strengths
 - Fragmented strength distributions are in common with stable nuclei
- It is difficult to measure all decay channels completely
- Can we obtain incompressibility or other information from exclusive decay channel ?

