Investigation for ISGDR of ⁵⁸Ni with (a ,a '-*p*) coincidence measurement

H. Hashimoto

Research Center for Nuclear Physics (RCNP), Osaka University

- I. Introduction
- II. Experiment
- III. Analysis
- IV. Summary

Collaborators

- Research Center for Nuclear Physics (RCNP)
 M. Fujiwara, H. Fujimura, M. Itoh, K. Kawase,
 K. Nakanisi, S. Okumura, M. Uchida
- Konan university
 - H. Akimune
- University of Notre Dam
 - U. Garg, B.K. Nayak
- High Energy Accelerator Research Organization (KEK)
 K. Hara
- Kyoto university

T. Murakami, H. Sakaguchi, S. Terashima, Y. Yasuda,

M. Yosoi, J. Zenihiro

Giant resonances and nuclear incompressibility

Giant Resonances

Collective excitation modes that nucleons vibrate coherently in nucleus

 Compressive giant resonances relate directly to the nuclear incompressibility (K_A) because of the density oscillation

$$E_{ISGMR} \approx \sqrt{\frac{K_A}{m < r^2 >}}$$
$$E_{ISGDR} \approx \sqrt{\frac{3}{7}} \frac{K_A + (27/25)\boldsymbol{e}_F}{m < r^2 >}$$

Inelastic a scattering and Isoscalar resonances

- a particle
 Isospin (T) = 0 ? Responsible only for isoscalar excitations in Spin (S) = 0 hadronic interaction
- Isoscalar giant resonance
 ? T = 0
 ? S = 0
- The cross-section distributions at forward angles for L=0 and 1 are different from the others

Expriment

Ring cyclotron facility

(Research Center for Nuclear Physics, Osaka univ.)

• Spectrometer D2 Grand Raiden "Grand Raiden" (p/? p = 37,000) Incident beam **D1** DSR 4 He, E = 400 MeV 0 1 2 3 m $E_{FWHM} = 200 \text{ keV}$ Focal Reaction target Plane Scattering Detector ⁵⁸Ni foil : 4.0 mg/cm² Target chamber • (a ,a ') at 2.5° ⁴He⁺⁺ beam

Excitation energy range : 19 - 43 MeV

Coincidence measurement

- Lithium drifted silicon detecter
- > Active depth : 5 mm (E_p ?30 MeV)
- Effective area : 405 mm²×16 (total solid angle : 4%)
- ➤ E_{FWHM} ? 70 keV
- \blacktriangleright ?_{SSD} = 100 ° 160 ° at intervals of 10°
- ? elimination of quasi-free/pick-up/ break-up
- Surface barrier type silicon detecter
- ➤ active depth : 100 µm
- Three sets of ?E-E counters for particle identification

: decay particle

Identification for decay particles

Scatter plot of decay-energy vs. the excitation energy in ⁵⁸Ni.

The loci correspond to the final states in ⁵⁷Co.

Final states in ⁵⁷Co

Difference-of-spectra method

Angular distributions

Comparision to multipole decomposition analysis

Summary

- Measurement of decay particles from excited states via the ⁵⁸Ni(a ,a ') reaction
- Identification of proton hole states
- Identification of ISGDR in ⁵⁸Ni

