Systematics of strength functions of isoscalar dipole and monopole modes

J. Terasaki (Univ. of North Carolina at Chapel Hill)

- Quasiparticle random-phase approximation
- Systematics of strength functions: IS 1⁻ Ni and 0⁺ Sn
- Incompressibility of nuclear matter

July. 14, 2005, Notre Dame

Quasiparticle random phase approximation (QRPA)

What approximation?

- Excitations are represented by linear combinations of 2-quasiparticle creation and annihilations (if there is no pairing correlations, 1p-1h creation and annihilation).
- 2. Good for collective vibrations (the more harmonic, the better).

Scheme of solution

- $HFB \leftarrow Dobaczewski et al. Nucl. Phys. A422 (1984) 103$ q.p. wave functions are obtained.
- $QRPA \leftarrow matrix formulation$ Cf. e.g. D.J. Rowe, Nuclear Collective Motion

HFB

self-consistent mean field and pair field w.f. of canonical basis, uv factors two-body interaction

QRPA

Self-consistent Spherical symmetry J.T. et al., P.R.C 71, 034310 (2005) Interaction used

Skyrme interaction for particle-hole matrix elements

```
SkM*, SLy4, SkP, SkO'
```

For particle-particle and hole-hole matrix elements

Volume-type pairing interaction (no density dependence)

Definitions of the transition operators used ($J^{\pi}=0^+$, IS)

$$F_{00}^{IS} = \frac{eZ}{A} \mathop{a}_{i=1}^{A} r_i^2$$

used by G.F. Bertsch, S. Kamerdzhiev, S. Sagawa (not recent ones) ...

Energy-weighted sum rule (EWSR) $\dot{\mathbf{a}}_{k} E_{k} \left| \left\langle k \left| F_{00}^{IS} \right| \mathbf{0} \right\rangle \right|^{2} = 2 \frac{e^{2} \hbar^{2}}{m} \frac{Z^{2}}{A} \left\langle r^{2} \right\rangle$

Energy-weighted sum rule, 0⁺ (SkM*)

Energy-weighted sum rule, 0⁺ (SkM*)

Energy-weighted sum rule, 0⁺ (SkM*)

Energy-weighted sum rule, 1⁻ (SkM*)

Energy-weighted sum rule, 1⁻ (SkM*)

Energy-weighted sum rule, 2⁺ (SkM*)

EWSR(0^+)/EWSR(2^+) = $\frac{8p}{25}$ @1

Energy-weighted sum rule, 2⁺ (SkM*)

Energy-weighted sum rule, 2⁺ (SkM*)

Separation of the spurious component; $J^{\pi} = 1^{-}$ mode

correction $F_{1M}(\underline{r}) = \overset{\mathbf{ae}}{\underset{\mathbf{e}}{\mathbf{e}}}^3 - \frac{5}{3} \langle r^2 \rangle r \overset{\mathbf{\ddot{o}}}{\underset{\mathbf{e}}{\mathbf{f}}} Y_{1M}(O)$

Separation of the spurious component; $J^{\pi} = 0^{+}$ mode

Strength function for the neutron number operator

At A = 154 - 162 (N = 104 - 112) ground states : deformed

Exp. data

S.Shlomo and D.H. Youngblood, Phys.Rev.C, **47**, 529 (1993) Tab.III However,

D.H. Youngblood et al., Phys.Rev.Lett., 82, 691 (1999)

	TAMU 1998		Previous Work		TAMU 1998	TAMU 1998	
	Gaussian		Gaussian		Gaussian	Slice Analysis	
	Cross Section		Cross Section		E0 Strength	E0 Strength	
	Centroid MeV	error MeV	Centroid MeV	error MeV	$rac{m_1/m_0}{\mathrm{MeV}}$	${m_1/m_0 \over { m MeV}}$	error MeV
⁹⁰ Zr	16.44	0.07	16.10	0.28	16.80	17.89	0.20
¹¹⁶ Sn	15.77	0.07	15.60	0.16	16.00	16.07	0.12
¹⁴⁴ Sm	15.16	0.11	15.10	0.14	15.31	15.39	0.28
²⁰⁸ Pb	13.91	0.11	13.90	0.30	14.24	14.17	0.28

TABLE I. GMR energies and errors in MeV.

15.50 0.20 in 1993

TAMU 1998 Adopted Energies E0 Strength					
$(m_1/m_{-1})^{1/2}$	error				
MeV	MeV				
17.81	0.35				
15.90	0.07				
15.25	0.11				
14.18	0.11				

Peak energy of GMR and K_{nm}

D.Vretenar et al., P.R.C **68**, 024310 (2003)

Exp.: S.Raman et al., Atom.Dat.Nucl.Dat.Tab. **78,** 1 (2001), D.C.Radford et al., P.R.L. **88**, 222501 (2002); talk in ENAM04

Transition probabilities of the lowest 2⁺ states of Sn

Effective mass (nuclear matter) / bare mass

Summary

- Systematic QRPA calculations have been done for even Sn, Ni, and Ca with J^π=0⁺,1⁻, and 2⁺ from the proton drip line to the neutron drip line with a few parameter sets of the Skyrme interaction.
- Compression modulus was deduced from the experimental data of ^{112,116,120,124}Sn using the QRPA calculation;

K_{nm}=204.8 ±7.9 MeV.

SkP seems good.

I would like to thank

W. Nazarewicz, J. Engel, J. Dobaczewski, M. Bender, and M. Stoitsov

for their great helps to this research.