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Central Collisions and the EOS of Dense 
Asymmetric Nuclear Matter

• Present constraints on the EOS. 
• Relevance to dense astrophysical objects:
• Probing asymmetric matter at ρ≤2ρ0. 
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Ø What is known about the EOS for symmetric matter?
qMain information comes from heavy ion collisions.
qMonopole, isoscaler dipole resonances sample ~ 5% variations 

in density (i.e. curvature about minimum)
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Pressure and collective flow dynamics

• The blocking by the spectator matter provides a clock with which to 
measure the expansion rate. 

pressure 
contours

density 
contours



• Additional measurements were 
needed to constrain:
– Momentum dependence of mean 

fields.
– Cross-sections due to residual 

interactions.

Constraints on symmetric matter EOS at  ρ>2 ρ0.
Observables: transverse, elliptical flow. 
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Extrapolation to neutron stars

• Uncertainty due to the density 
dependence of the asymmetry 
term is greater than that due to 
symmetric matter EOS. 
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• Macroscopic properties:
– Neutron star radii, moments of 

inertia and central densities.
– Maximum neutron star masses 

and rotation frequencies.

• Proton and electron fractions 
throughout the star.
– Cooling of proton-neutron star.

• Thickness of the inner crust.
– Frequency change 

accompanying star quakes.

• Role of Kaon condensates and 
mixed quark-hadron phases in 
the stellar interior.
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Danielewicz et al., (2002) Symmetry term influences:

E/A (ρ, δ) = E/A (ρ,0) + δ2⋅S(ρ)        δ = (ρn- ρp)/ (ρn+ ρp) = (N-Z)/A≈1
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Ø How can one probe the asymmetry term?
q Note: observables are needed mainly to constrain the interaction

term:

q Other observables will also be needed to constrain isospin 
dependent in-medium NN cross sections and neutron and neutron 
and proton effective masses
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Probing the asymmetry term

• At sub-saturation densities
– Difference between neutron and 

proton matter radii.
– Isospin diffusion
– Asymmetry of bound residues.
– Prequilibrium n vs. p emission.
– Transverse flow (n.vs.p).
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protons and neutrons.
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term:
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E/A<100 MeV; Multifragmentation Scenario

• Initial compression and energy deposition
• Expansion – emission of light particles.
• Cooling – formation of fragments
• Disassembly
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Central collisions
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Central collisions: isospin fractionation
For a neutron rich system at ρ<ρ0:

asy-soft (F3) more symmetric
dense region

neutron-rich 
emitted particles

N/Zres=Ntot/Ztotasy-stiff (F1)

N/Zem≈Ntot/Ztot

95/77=1.23F_3 (asy-soft)

Residue N/ZEOS

102/71=1.44F_1 (asy-stiff)

Residue N/ZEOS

BUU predictions for central 124Sn+ 124Sn (N0/Z0=1.48) collisions at E/A=50 MeV

Possible observables: 
n vs. proton 
emission, asymmetry 
of residues



• Ratios of isotopic yields of two reactions 
at same “temperature” are related 
exponentially. 

• Relationship can be derived from a 
variety of statistical theories and is also 
obtained in AMD calculations: α∝δsource. 
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1st Observable: Isoscaling parameters of fragments

• Shape of isotopic distributions 
depends on overall isospin
asymmetry of source (PLF).
– Dependence on overall isospin 

asymmetry is described by 
isoscaling laws. 
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Model dependence of fragment isoscaling parameters. 

• Few precise calculations:
– BUU-ISMM, EES, AMD and SMF.
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Relative Neutron(Proton) Densities

• and             are not sensitive to secondary decays.
• Sdfsdf            increases more rapidly than (N/Z)0 fractionation. 
• Comparison favors the stiffer asymmetry term.
• Similar conclusions obtained from comparisons of mirror nuclei.
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SMF calculations

• Significant difference between the 
scaling parameters for primary 
and secondary distributions

• Similar though smaller  effect 
observed for AMD calculation
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Surface emission EES model

• Theoretically: 

• Separation energies depend on 
density dependence asymmetry 
term: 

• Strong influence of symmetry 
term on fragment isotopic ratios.
– trend is opposite to SMF and 

BUU-SMM results.
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• Direct measurements of n vs. proton emission rates and transverse flows 
- Probes the pressure from asymmetry term at saturation density and 
below.
– Clusters can be addressed within coalescence invariant analyses
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2nd Observable n and p spectra

soft asymmetry term
Bao-An Li et al., PRL 78, 1644 (1997)

stiff asymmetry term

• Double ratio is less sensitive to energy calibration and neutron
efficiency uncertainties.
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P-detection: Scattering Chamber

3 particle telescopes
(p, t, 3He, …)

n-TOF start detector
WU MicroBall
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Coalescence invariant spectra 

• Coalescence invariant analysis decreases sensitivity to cluster production 
model uncertainties:
– Approach consistent with successful flow analyses.
– Permits accurate comparisons to theory at E/A>30 MeV
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Data : Famiano et al, preliminary
BUU: Li, Ko, & Ren PRL 78, 1644, (1997)
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Future plans: S2 reconfiguration

• A program of neutron measurements in the S2 vault was favorably 
reviewed by the program advisory committee at its latest meeting.

• Collaboration WMU (Famiano), MSU (Lynch, Tsang) and WU 
(Sobotka, Charity).

• Objectives are to constrain S(ρ), m*
n,, m*

p, σpp and σnp. 
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Summary

• Dependence of fragment isoscaling parameters on 
asymmetry term is model dependent.

• Comparisons of neutron and proton observables appear to 
be very promising.

• We expect that three quantities need to be constrained:
– density dependence: started
– momentum-isospin dependence: started
– isospin dependent in-medium cross sections: next

• We have promising observables to constrain these.
• Other factors:

– uncertainty in the impact parameter.
– role of fluctuations.
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asymmetry term is largely 
unconstrained.

• Pressure, i.e. EOS is rather 
uncertain even at ρ0.
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Isospin Dependence of the Nuclear 
Equation of State
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