The Nuclear Equation of State of Compact Stars

> Fridolin Weber San Diego State University San Diego, CA, USA

228th ACS National Meeting, Philadelphia, PA, August 22-26, 2004

Compact Stars

White dwarfs

(www.gsfc.nasa.gov/gsfc/spacesci/pictures/2003)

Neutron stars

Classical Neutron Star Composition ~ 1930's Neutrons only

Neutron Star Composition in 2004

Structure and EoS of Strange Stars

Strange Dwarfs: PRL 74 (1995) 3519; surface properties: see V. Usov, astro-ph/0408217

Surface Properties of Strange Matter

Equation of State of Strange Stars with Nuclear Crusts

Complete Sequences of Compact Stars

Strange Stars – Strange Dwarfs

Mass-Radius Relationship of Neutron and Quark Stars

Dependence of Particle Thresholds on Spin Frequency of a Neutron Star

F. Weber, J. Phys. G: Nucl. Part. Phys. 25 (1999) R195

Model Quark-Hadron Composition

Einstein's field equation: R^{μv}-1/2 g^{μv} R = 8πT^{μv}(ε,P)

Energy-momentum tensor: $T^{\mu\nu} = (\epsilon + P) u^{\mu} u^{\nu} + P g^{\mu\nu}$

Line element of a non-rotating star: $ds^2 = -e^{2\Phi(r)} dt^2 + e^{2\Lambda(r)} dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\theta^2$

Line element of a rotating star: $ds^{2} = -e^{2\Phi(r,\theta,\phi,\Omega)} dt^{2} + e^{2\Lambda(r,\theta,\phi,\Omega)} dr^{2} + e^{2\mu(r,\theta,\phi,\Omega)} d\theta^{2} + e^{2\psi(r,\theta,\phi,\Omega)} (d\phi - \omega dt)^{2}$

Quark-Hadron Composition in Rotating "Neutron" Stars

Hyperon Population in Rotating Neutron Stars

But

Zdunik, Haensel, Gourgoulhon, and Bejger (A&A 416 (2004) 1013):

Find backbending due to hyperon softening for some models of the EOS based on Lattimer-Swesty equation.

Not found for relativistic mean-field EOSs.

)9/01/2004

Density Profiles of Rotating Quark-Hybrid Stars

Quark-Hadron Composition of Rotating "Neutron" Stars

$$\begin{split} \mathbf{I} &= \Omega^{-1} \int \left\{ [(\epsilon + P)(\ \Omega - \omega) \ e^{2\psi}] \\ & [e^{2\Phi} - (\Omega - \omega)^2 \ e^{2\Psi}]^{-1} \ e^{\Phi + \Lambda + \mu + \Psi} \ dV \right\} \end{split}$$

Einstein:

Moment of Inertia in General Relativity Theory

Newtonian theory: $I = \int r^2 dm = \int r^2 \varepsilon dV$

Moment of Inertia

$\mathbf{n} = (\mathbf{\Omega} \ \mathbf{d}^2 \mathbf{\Omega} / \mathbf{d} t^2) \ (\mathbf{d} \mathbf{\Omega} / \mathbf{d} t)^{-2}$

Braking Index

$\mathbf{n}(\Omega) = \Omega \left(\frac{d^2\Omega}{dt^2}\right) / \left(\frac{d\Omega}{dt}\right)^2$

$d\mathbf{E}/dt = -C \ \Omega^{n+1}$

Star's total energy: $\mathbf{E} = \mathbf{M}_0 \mathbf{c}^2 + \mathbf{U} + \mathbf{T} + \mathbf{W}$

$\mathbf{n}(\Omega) = \mathbf{3} - (\mathbf{I''} \ \Omega^2 + \mathbf{3I'} \ \Omega) \ (\mathbf{I'} \ \Omega + \mathbf{2I})^{-1}$

Possible Astrophysical Signal of Quark Deconfinement

Epoch over which "n" is anomalous

Signal of Quark Matter in NSs

Glendenning, Pei, Weber, PRL 79 (1997) 1603

Weber, J. Phys. G: Nucl. Part. Phys. 25 (1999) R195

Weber, Prog. Part. Nucl. Phys. (in print)

Open Issues

Is signal restricted to stellar masses that are within a few percent of $M_{_{\rm max}}$?

Is signal restricted to millisecond pulsars ?

Spin Evolution of Accreting Neutron Stars

Neutron Stars in Binary Systems (LMXBs)

Accretion rates: $dM/dt \sim 10^{-10} M_{sun}/year$

Mathematically: dJ/dt=dM/dt L - N

Spin Frequency Evolution of Neutron Stars in LMXB's

Frequency Distribution of X-Ray Neutron Stars

Glendenning & Weber, ApJ 559 (2001) L119

Histogram of Neutron Stars Spin Frequencies

(from L. Bildsten, astro-ph/0212004)

Physical properties of matter at super-nuclear densities are highly uncertain and associated **EoS is only very poorly known.**

Major open issues: strangeness, meson condensates, quark-hadron phase transition.

Possible astrophysical signals of **quark deconfinement** inside neutron stars may be:

Spin-up of isolated pulsars (backbending).
Dramatic anomaly in braking indices of pulsars.
Anomalous spin distribution of accreting neutron stars.

Open issues: Unambiguousness of these signals? r-modes or mass quadrupole moment could explain NS pile-up as well.

Model dependences: B(t=0), dB/dt, μ , dM/dt, \overline{M}_{max} , M_{donor} , ... Signal limited to MSPs? Limited to pulsar masses ~ M_{max} ?