Probing Dense Asymmetric Nuclear Matter Outline

- Present constraints on the EOS.
- Relevance to dense astrophysical objects:
- Probing asymmetric matter at $\rho \leq 2\rho$.
- Prospects for probing asymmetric matter at $\rho \approx 2\rho_0$.

Isospin Dependence of the Nuclear Equation of State

 $\delta = (\rho_n - \rho_p) / (\rho_n + \rho_p) = (N - Z) / A$

• Pressure, i.e. EOS is rather uncertain even at ρ_0 .

What is known about the EOS for symmetric matter?
 Main information comes from heavy ion collisions.
 Monopole, isoscaler dipole resonances only sample ~ 5% variations in density (i.e. curvature about minimum)

Pressure and collective flow dynamics

• The blocking by the spectator matter provides a clock with which to measure the expansion rate.

Constraints on symmetric matter EOS at $\rho > 2 \rho_0$.

Observables: transverse, elliptical flow.

Extrapolation to neutron stars

E/A (ρ , δ) = E/A (ρ , 0) + $\delta^2 \cdot S(\rho)$ $\delta = (\rho_n - \rho_p)/(\rho_n + \rho_p) = (N-Z)/A \approx 1$

• Uncertainty due to the density dependence of the asymmetry term is greater than that due to symmetric matter EOS.

Symmetry term influences:

- Macroscopic properties:
 - Neutron star radii, moments of inertia and central densities.
 - Maximum neutron star masses and rotation frequencies.
- Proton and electron fractions throughout the star.
 - Cooling of proton-neutron star.
- Thickness of the inner crust.
 - Frequency change accompanying star quakes.
- Role of Kaon condensates and mixed quark-hadron phases in the stellar interior.

How can one probe the asymmetry term?
 Note: important factor is the interaction term:

 $S(\rho) = S_{kin}(\rho) + S_{int}(\rho);$ $S_{kin}(\rho) \approx \frac{1}{3} E_{Fermi}(\rho) \approx 13 \cdot (\rho / \rho_0)^{2/3} MeV$

Probing the asymmetry term

- Sign of mean field opposite for protons and neutrons.
- Shape is influenced by incompressibility.

Observables:

- "First order": depend on isospin of detected particles.
 - Isospin dependencies of pion production.
 - Transverse flow (n.vs.p).
 - Isospin diffusion
 - Prequilibrium particle emission.
 - Asymmetry of bound vs. emitted nucleons.
 - difference between neutron and proton matter radii.
- "Second order": do not depend on isospin of detected particles.

▶ Present investigations of asymmetry term at ρ≤ρ₀.
 □ Central collisions : Relative emission rates of neutron vs. protons – fragment isotopic distributions.
 □ Peripheral collisions: Isospin diffusion.

> Future investigations of asymmetry term at $\rho \approx 2\rho_0$.

Isospin diffusion in peripheral collisions

• In a frame where the matter is stationary:

$$\vec{\Gamma}_{\delta} \equiv \left(\rho_n \vec{v}_n - \rho_p \vec{v}_p\right) = -\rho D_{\delta} \vec{\nabla} \delta$$

- D_{δ} the isospin diffusion coef.
- D_{δ} governs the relative flow of neutrons and protons
 - D_{δ} decreases with σ_{np}
 - D_{δ} increases with $S_{int}(\rho)$

- Vary isospin driving forces by changing the isospin of projectile and target.
- measure the scaling parameter for projectile decay.

1st Observable: Isoscaling parameters of isotopic distributions

- Shape of isotopic distributions depends on overall isospin asymmetry.
 - Dependence on overall isospin asymmetry is described by isoscaling laws.

• Ratios of isotopic yields of two reactions at same "temperature" are related exponentially.

 $R_{21} = Y_2(N,Z) / Y_1(N,Z) \propto e^{(\alpha N + \beta Z)}$ Relationship can be derived from a

Relationship can be derived from a variety of statistical theories and is also obtained in AMD calculations: $\alpha \propto \delta_{source}$.

Isospin equilibrium or not?

 Projectile and target residues do not come to isospin equilibrium at E/A=50 MeV.

• Very useful to rescale the data:

$$R(\alpha) = \frac{2\alpha - \alpha_{124+124} - \alpha_{112+112}}{\alpha_{124+124} - \alpha_{112+112}}$$

Isospin equilibrium or not?

 Projectile and target residues do not come to isospin equilibrium at E/A=50 MeV.

• Very useful to rescale the data:

$$R(\alpha) = \frac{2\alpha - \alpha_{124+124} - \alpha_{112+112}}{\alpha_{124+124} - \alpha_{112+112}} \approx R(\delta_{PLF})$$

• Since $\alpha \propto \delta_{PLF}$, $R(\alpha) = R(\delta_{PLF})$.

How Robust is the Observable? Dependence on rapidity and transverse momentum: Liu, et al., (2004) () 200 175 175 150 150 100 1.5 200 Ň 0.8 < b < 1 $R(ln[Y_{7Be}/Y_{7Li}]) \equiv R_7$ ⁷Be 3.5 3 0.5 2.5 100 2 0 previous 75 1.5 -0.5 results 50 using α -1 0.5 25 0.8 < b < 1.0 (Peripheral) ¹0 0 -0.20.2 0.4 0.6 0.8 1.2 -1.5 0 0.8 1.2 0.2 0.40.6 y_r y_r

• Mirror nuclei ratios is another observable:

$$R_7 = Ln(Y_{7Be} / Y_{7Li}) \propto \mu_p - \mu_n$$

• Rapidity dependence is weak except at mid rapidity

- Quantity shown is Y(⁷Be,112+124)/ Y(⁷Be,124+112)
 ∞exp(κR₇)
- No strong p_t dependence seen.
 Overall trends are smooth.

Transport model predictions

Comparisons to data

L. Shi et al. (2004)

Tsang et al., PRL (2004).

Diffusion occurs within ≈ 120 fm/c.

- More mixing with soft $S(\rho)$
 - consistent with large E_{sym} at $\rho < \rho_0$.
- Less mixing with stiff $S(\rho)$.

- Explicit secondary decay correction gives same result.
- Stiff $S(\rho)$ favored.
- What about isospin dep. of mom. dependence, cross sections?

Results with momentum dependent mean field

0.0

50

100

t (fm/c)

150

How can one probe the asymmetry term at higher densities?

□ New projectile fragmentation facilities offer new opportunities.

Studies of asymmetry term at $\rho > \rho_0$.

• High density behavior of asymmetry terms can be group into two classes: i.e. increasing or decreasing with density.

stronger density dependence (asy-stiff)

weaker density dependence (asy-soft) typical of many Skyrme EOS's or some variational calculations (UV14+UV11)

Influences significantly the inner structure of neutron star and the cooling of proto-neutron stars by URCA processes.

Observables relevant to high density behavior: Observable 1: pion yields

• Softer asymmetry term favors neutron rich dense regions and larger relative π^{-}/π^{+} yield ratios:

Applications of TPC to such collisions

Example: EOS at LBL

- Rectangular TPC.
- Open forward geometry providing access for TOF wall, neutron detector and MUSIC.
- Advantages:
 - Good momentum resolution at forward angles.
 - Possibly lower detection thresholds at forward angles.

- Disadvantages:
 - Beam is perpendicular to magnetic field making beam line problematic.
 - acceptances of π^+ , π^- differ.

Probably can't have long flight to MUSIC at RIKEN, RIA or CCF energies –thresholds would be too high.

Conclusion

- Significant constraints on symmetric matter EOS have been obtained.
- Density dependence of symmetry energy can be examined experimentally.
- Observed isoscaling laws
- Conclusions from fragmentation work are model dependent:
 - BUU-SMM favors ρ^2 dependence of $S(\rho)$.
 - SMF favors ρ² dependence but isotope distributions are poorly reproduced
 - EES favors $\rho^{2/3}$ dependence of S(ρ).
- Signals have been identified for measurements of asymmetry term at higher densities $\rho \approx \rho_0 3.5 \rho_0$:
 - Isospin dependence of n vs. p flow, pion yields.

