## Online Tools for Understanding the Equation of State

Bradley S. Meyer, J. S. Brown, B. Donehew *Clemson University* 

- Condition of complete equilibrium among nuclear species under exchange of neutrons and protons
- Achieved in late stages of stellar evolution or in supernova explosions

$$\mu(Z,A) = Z\mu_p + (A-Z)\mu_n$$

- Our assumptions about the nuclei:
  - Boltzmann particles (except at low temperature where they can be bosons)
  - Incompressible, but finite volume
- Our assumptions about the nucleons (and electrons and positrons):
  - Non-interacting
  - Fully relativistic and degenerate

- The nuclei:  $\mu(Z,A) = m(Z,A)c^{2} + kT \ln\left(\frac{\rho N_{A}Y(Z,A)}{G(Z,A)} \left[\frac{h^{2}}{2\pi m(Z,A)kT}\right]^{3/2}\right)$
- We thus require:
  - Masses: m(Z,A)
  - Ground state spins: J(Z,A)
  - Nuclear partition functions: G(Z,A), which we take to be a multiple of 2J(Z,A)+1

- NSE codes are fairly straightforward to write and run
- However, one must write or obtain the code, compile it, test it, and then data mine the output
- This may be a barrier to those who would like to use such codes but do not have the time to undertake these steps

#### http://nucleo.ces.clemson.edu/pages/nse

- Online tool for calculating NSE
  - User inputs in a straightforward way nuclear properties (masses, spins, partition functions) or uses default values.
  - Computer at Clemson calculates NSE for the user-input set of temperatures, densities, and electron fractions.
  - Interfaces allow user to explore results of the calculation, including abundances and thermodynamic properties of the matter

# We have chosen W3C standards or recommendations

- Input data upload from client to server is via XML (eXtensible Markup Language)
  - Validation via Schema checking
  - Formatting via XSLT
- Form: <tag>data</tag>

## Example XML file

<nuclear\_data>

<!-- Neutron -->

<nuclide> <z>0</z> <a>1</a> <mass\_excess units="MeV">8.071</mass\_excess> <spin>0.5</spin> </nuclide>

<!- Proton -- >

</nuclide> <z>1</z> <a>1</a> <mass\_excess> 7.289 </mass\_excess> <spin>0.5</spin> </nuclide>

</nuclear\_data>

•

### Formatted Input

| Ζ | Α | Mass Excess (MeV) | Spin     |
|---|---|-------------------|----------|
| 0 | 1 | 8.07100           | 0.500000 |
| 1 | 1 | 7.28900           | 0.500000 |
| 1 | 2 | 13.1360           | 1.00000  |
| 1 | 3 | 14.9500           | 0.500000 |
| 2 | 3 | 14.9310           | 0.500000 |
| 2 | 4 | 2.42400           | 0.00000  |
| 3 | 6 | 14.0850           | 1.00000  |
| 3 | 7 | 14.9070           | 1.50000  |
| 3 | 8 | 20.9450           | 2.00000  |

### Output

- Output format is binary or FITS file
- User may data mine the output as soon as it is available or download it. Downloaded output files may be uploaded again.
- Data mining and graphics are through IDL on the Net (ION).

### Calculations

- Single calculations: user inputs T, density, Y<sub>e</sub>
  These calculations usually take < 1 minute</li>
- Multiple calculations: user inputs range of T, density, or Y<sub>e</sub> or enters an NSE trace
  - These calculations can take a while
  - The computer puts the calculation in the background and then emails the user with information on how to access the data when the calculation is done

### Example calculation

- T = 1 MeV
- $Y_e = 0.4$
- Density = 1.0e-6 to  $1 \text{ fm}^{-3}$













Mass Fraction





## Pages available

- Ideal gas calculator
  - Computes thermodynamics of an ideal fermionic or bosonic gas for any degree of degeneracy or relativity
  - Available:
    - http://nucleo.ces.clemson.edu/pages/ideal\_gas/0.1
- NSE calculator
  - Computes abundances and thermodynamics of matter in nuclear statistical equilibrium
  - Available:
    - http://nucleo.ces.clemson.edu/pages/nse/0.1
- Galactic Chemical Evolution calculator
  - Computes simple models of one-zone galactic chemical evolution
  - Available:
    - http://nucleo.ces.clemson.edu/pages/cugce/

## Purposes

- Research
- Education
- Code Archiving

## Acknowledgments

- SUN Microsystems (Academic Equipment Grant)
- Computer Support Services College of Engineering and Science at Clemson (especially Corey Ferrier and the Unix Team)
- NASA, DOE, and NSF for support



### mbradle@clemson.edu