Nonuniform neutron rich matter: From the Laboratory to the Stars

 Parity Radius Experiment and the density dependence of the symmetry energy

2. Semiclassical model of nuclear pasta

C. J. Horowitz, Philadelphia, August 2004

All conventional matter is frustrated

- It is correlated at short distances from attractive strong interactions.
- And anti-correlated at large distances from coulomb repulsion.
- Normally these length scales are well separated so nucleons bind into nuclei segregated on a crystal lattice.

Nuclear Pasta

- At great densities, the attractive nuclear and repulsive atomic length scales are comparable.
 - Leads to a complex ground state.
 - Can involve round (meat ball), rod (spaghetti), plate (lasagna), or other shapes.
- This "nuclear pasta" is expected in neutron star crusts and supernovae.
- It should have unusual properties and dynamics.

LES PÂTES / PASTA

Heavy Ion Collisions and Nuclear Pasta are Related

- Both driven by Coulomb and nuclear interactions.
- The Intermediate Mass Fragments in Multifragmentation are
 - Undercooked (not much time to equilibrate),
 - Undersized (role of Coulomb!),
 - Neutron poor, pasta.
- Need to extrapolate in isospin to more neutron rich systems.
 - RIA (more n rich nuclei)
 - Precession experiments with stable nuclei that provide crucial isospin information.
- Parity radius experiment (PREX) and density dependence of symmetry energy.
- Semiclassical pasta model and liquid vapor phase transition.

Parity Radius Experiment (P-ReX)

Uses parity violating electron scattering to measure the neutron radius of ²⁰⁸Pb

P-ReX references:

http://cecelia.physics.indiana.edu/prex/

Parity Violation Probes Neutrons

• Z boson couples to weak charge of neutron and proton:

 $\label{eq:Qn} Q_n \mbox{=-1}, \qquad \quad Q_p \mbox{= 1-4} sin^2 \Theta_W \approx 0.$

- Weak charge of $n \gg$ that of p.
- Parity violating asymmetry in elastic electron scattering provides a purely electroweak probe of neutron density. $d\sigma = d\sigma$

$$A = \frac{\frac{d\sigma}{d\Omega_{+}} - \frac{d\sigma}{d\Omega_{-}}}{\frac{d\sigma}{d\Omega_{+}} + \frac{d\sigma}{d\Omega_{-}}}$$

• In Born approx A measures ratio of weak to charge form factors. $A = \frac{G_F Q^2}{4\pi \alpha 2^{1/2}} F_W(Q^2) / F_{ch}(Q^2)$

Jefferson Lab Hall A exp.

- Elastic e scattering: ²⁰⁸Pb at 850 MeV, 6°.
- Measure A \approx 0.6 ppm to 3%. This gives neutron radius to 1% (\pm 0.05 fm).
- Cleanly resolves skin: R_n - $R_p \approx 0.2$ fm.
- Theoretical interpretation of measurement is very clean.

• R. Michaels, P. Souder, G. Urciuoli spokespersons.

Pb Radius Measurement

 Energy of neutron matter is E of nuc. matter plus symmetry energy.

 $E_{neutron} = E_{nuclear} + S(\rho)$

 $P \rightarrow dE/d\rho \rightarrow dS/d\rho$

- Pressure depends on derivative of energy with respect to density.
- Pressure forces neutrons out against surface tension. Large pressure gives large neutron radius.
- Neutron radius determines P of neutron matter at \approx 0.1 fm⁻³ and the density dependence of the symmetry energy dS/dp.

Neutron minus proton rms radius of Pb versus pressure of pure neutron matter at ρ =0.1 fm⁻³.

Pb Radius vs Neutron Star Radius

- The ²⁰⁸Pb radius constrains the pressure of neutron matter at subnuclear densities.
- The NS radius depends on the pressure at nuclear density and above.
- Most interested in density dependence of equation of stare (EOS) from a possible phase transition.
- Want both low density (Pb) and high density (NS) measurements to constrain density dependence of EOS.
 - If Pb radius is relatively large then EOS at low density is stiff with high P. If NS radius is small then high density EOS soft.
 - This softening of EOS with density could strongly suggest a transition to an exotic high density phase such as quark matter, strange matter, color superconductor, kaon condensate...

Simple Semiclassical Model of Pasta

Contains basic frustration physics: nuclear binding and coulomb repulsion

Pasta Model

- Charge neutral system of n, p, and e.
- Large e Fermi energy makes them almost inert. [Electrons provide screening length λ for Coulomb.]
- n, p interact via classical 2-body pot.

$$\begin{split} H &= K + \sum_{i < j} v(r_{ij}) \\ v(r) &= a \ \text{Exp}[-r^2/\Lambda] + b_{ii} \ \text{Exp}[-r^2/2\Lambda] + e_i e_i \ \text{Exp}[-r/\lambda]/r \end{split}$$

- 4 parameters a, $b_{pp}=\dot{b}_{nn}$, b_{pn} , Λ fit to binding E and saturation density of nuclear matter, reasonable E for pure neutron matter and some finite nuclei.
- Keep system at finite T to simulate some zero point motion and adjust parameters to account for Pauli repulsion.
- Details unimportant, model has basic frustration physics.

Molecular Dynamics Simulation

- Small run with 4000 nucleons [800 p (red), 3200 n (clear)]
- Density ρ=0.05
 fm⁻³
- Visualization by undergraduate J. Weiner.

• All pasta results for $Y_e=0.2$ and T=1 MeV.

Neutrino Pasta Scattering

- Supernovae radiate 99% of their energy in neutrinos.
- SN dynamics very sensitive to how neutrinos interact with the matter.
- What is v mean free path in pasta?
- What pasta modes can v excite?

Static Structure Factor

- Effective cross section per nucleon is $d\sigma/d\Omega = S(q) d\sigma/d\Omega|_{free}$
- Sum over all possible reflections. $S(q) \propto \sum_{i,i} exp[iq \cdot r_{ij}]$

 $S(q) \propto \sum_{i,j} e^{j} \rho_{i,j} q^{j}$ $S(q)=1+\rho \int d^{3}r$

 $e^{iq \cdot r} (g(r)-1)$

• S(q) gives the degree of coherence.

Larger Simulations

- Wave length of 10 MeV v is 120 fm. Hard to fit in box.
- A= $\rho\lambda^3 \approx$ 100,000 at ρ =0.05 fm⁻³
- Use MDGRAPE hardware to run larger simulations.
- Efficiently sums forces from all other particles.
- \approx 90 times speed of single CPU.

40,000 nucleons in simulation volume at $\rho\text{=}0.01~\text{fm}^{\text{-}3}$

Proton density at ρ =0.01 fm⁻³

Proton density at ρ =0.025 fm⁻³

Proton density at ρ =0.05 fm⁻³

Liquid Vapor Phase Transition

- In a first order phase transition, low density vapor is in equilibrium with high density liquid.
- Large density fluctuations arise as liquid is converted to/ from vapor.
- Static structure factor at q=0 related to density fluctuations.

$$S(q = 0) = \frac{1}{N} [\langle \hat{N}^2 \rangle - \langle \hat{N} \rangle^2]$$

- Expect very large S(0) in two-phase coexistence region of simple first order phase transition → very short neutrino mean free paths in a supernova.
- We find no large enhancement of S(0) → system is *not* described by simple first order phase transiton.

Phase Transitions in Systems With Two Conserved Quantities

- Need to conserve both mass (baryon #) and electric charge. [N. Glendenning]
- Density fluctuations in simple liquid vapor phase transition do not insure charge neutrality.
- Instead of simple liquid vapor transition have mixed phase region of both liquid and vapor \rightarrow This is the nuclear pasta.
- S(0) in mixed phase is small from ion screening instead of being large from density fluctuations.

Nuclear Pasta

- Competition between nuclear attraction and Coulomb repulsion leads to complicated ground state.
- Present in inner crust of neutron stars and supernovae.
- Pasta may be important for radio, x-ray, gravitational, and neutrino radiations.
- Simple semi-classical model predicts complex behavior.
- Calculated static structure factor used to describe neutrino mean free path from molecular dynamics computer simulations.

Nuclear Pasta Family

- Jorge Piekarewicz (FSU)
- Angeles Perez-Garcia (Post doc from Spain)
- Don Berry (IU High Performance Computing)
- Students:
 - Liliana Caballero and Helber Dussan
 - Joe Carriere (Neutron Stars)
- Pasta simulations see: Phys.Rev. C69 (2004) 045804 (astro-ph/0401079)
- Parity radius experiment see: <u>http://cecelia.physics.indiana.edu/prex/</u>