Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress

W.G.Newton¹, J.R.Stone^{1,2}

¹University of Oxford, UK ²Physics Division, ORNL, Oak Ridge, TN

Outline

• Aim

- Self-consistent EOS calculation
- Context
- Preliminary Results
- Summary

Aim

- Equation of state of matter in the density range $n_b \approx 0.0001 - 0.5 \text{ fm}^{-3}$ and the temperature range $T \approx 0 - 100 \text{MeV}$, for use in the study of supernovae and neutron stars
- Calculate in such a way that the microphysical structure and bulk properties of the matter emerge self-consistently.

Aim: Features of Hot Dense Matter

- Low densities: nuclei + electrons
- 0.001 < n_b < 0.1 fm⁻³: massive neutron rich nuclei + neutron gas
- Shape transitions in the range 0.01 < n_b < 0.1 fm⁻³
- > 0.1 fm⁻³ uniform nuclear matter
- Shell structure
- (+ fermions etc.)

Aim: Self-Consistency

Work with a non-relativistic theory

Select a single Hamiltonian

H = T_{nucleons} + T_{fermions} + V_{nucleons} + V_{Coulomb}
Select a nuclear potential containing all relevant microscopic interactions

 Employ one method to solve Schrödinger equation, apply consistently at all n_b, T.

- Choose phenomenological potential, e.g. Skyrme
- Choose the nuclear ground state to be Slater determinants (Hartree-Fock approx.)
- Fermion species treated as ideal Fermi gases
- Minimize the Hamiltonian with respect to all free parameters
 - nuclear s.p. wavefunctions
 - baryon number
 - proton fraction y_p

- HF equations and Poisson equation solved within a 3-D rectangular unit cell with periodic boundary conditions
- Initial wavefunctions: harmonic oscillator (lower densities), plane waves (higher densities)
- Iterative method used: imaginary time step¹

$$|\phi_{i,q}^{n+1}\rangle = e^{-\Delta t \ h_{HF}/\hbar} |\phi_{i,q}^n\rangle$$

¹Davies et al Nucl Phys A342, 111 (1980)

Free of the limitations of the Wigner-Seitz approximation...

...any lattice type can be represented

 Impose parity conservation in the three dimensions: tri-axial shapes allowed, but not asymmetric ones.

- Solution only in one octant of cell
- Still computationally intensive: to calculate one configuration takes of order 24hrs
- Testing: code reproduces binding energies and single particle structure of laboratory nuclei

EOS construction

For a given n_b,T, calculate the energy density of the matter for a range A (cell size), y_p: select the minimum value

 To explore shape effects: minimize with respect to deformation (constrained calculation)

Context...

 Our calculation is continuing on from where others left off...

 Bonche and Vautherin, Nucl Phys A372 (1981), A&A 115 (1982): 1-D

HF calculations in the Wigner-Seitz approximation, finite T

 Hillebrandt and Wolff (1985) conduct supernova simulations based on the resultant EOS

Context...

1-D Skyrme-HF EOS in supernova simulations

Bonche and Vautherin

Neutron gas and nuclei coexist self-consistently...

...and the bubble phase too

Context...

- Magierski and Heenen PRC65 045804 (2001): 3-D HF calculation of nuclear shapes at bottom of neutron star crust at zero T
- When treated in 3 dimensions, series of shape transitions become complex

Context: Magierski and Heenen

Context... Magierski and Heenen

• Rapid fluctuation of energy difference between phases with density

• Fluctuation is from shell energy of the unbound neutrons: a Casimir-like Effect

 Confirmed by comparing with shell energy of neutrons in semi-classical approx.

 Such effects may even reverse order of phase transitions

A=120 Z=0.25, T=0MeV, n_b = 0.007fm⁻³

A=120 Z=0.25, T=2.5 MeV, $n_b = 0.007 \text{fm}^{-3}$

EOS of Uniform nuclear matter

S=1, $Y_p = 0.3$

Summary

- We are constructing a self-consistent EOS using Skyrme-HF in 3D
- Will take into account the temperature and density effects on 3D nuclear shapes
- Basic testing of the code is complete
- First set of calculations (minimization w.r.t mass number) under way