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Aim

Equation of state of matter  in the density 
range    nb ≈ 0.0001  – 0.5 fm-3  and  the 
temperature  range  T ≈ 0 – 100MeV, for 
use   in   the   study  of  supernovae  and 
neutron stars
Calculate  in  such  a way that the micro-
physical structure  and bulk properties of 
the matter emerge self-consistently.



Aim: Features of Hot Dense Matter

Low densities: nuclei + electrons
0.001 < nb < 0.1 fm-3: massive neutron rich 
nuclei + neutron gas
Shape transitions in the range 0.01 < nb
< 0.1fm-3

> 0.1 fm-3 uniform nuclear matter
Shell structure
(+ fermions etc.) 



Aim: Self-Consistency

Work with a non-relativistic theory
Select a single Hamiltonian
H = Tnucleons + Tfermions + Vnucleons + VCoulomb

Select  a  nuclear  potential containing all 
relevant microscopic interactions
Employ one method to solve Schrödinger 
equation,  apply  consistently  at  all nb, T.



Self-Consistent Calculation

Choose   phenomenological    potential,   e.g. 
Skyrme
Choose   the   nuclear   ground  state   to   be   
Slater determinants (Hartree-Fock approx.)
Fermion species treated as ideal Fermi gases
Minimize  the  Hamiltonian  with respect to all
free parameters
- nuclear s.p. wavefunctions
- baryon number
- proton fraction yp



Self-Consistent Calculation

HF  equations   and   Poisson  equation  solved 
within a 3-D rectangular  unit  cell  with periodic 
boundary conditions
Initial wavefunctions: harmonic oscillator (lower 
densities), plane waves (higher densities)
Iterative method used: imaginary time step1

1Davies et al Nucl Phys A342, 111 (1980)



Self-Consistent Calculation

Free of the limitations of the Wigner-Seitz 
approximation…

BCC…

FCC…

...any lattice type can be represented



Self-Consistent Calculation

Impose  parity  conservation  in the three 
dimensions: tri-axial shapes allowed, but 
not asymmetric ones.
Solution only in one octant of cell
Still computationally intensive: to calculate 
one configuration takes of order 24hrs
Testing: code reproduces binding energies 
and  single  particle  structure of laboratory 
nuclei



EOS construction

For  a  given nb,T,  calculate the energy 
density of the matter for a range A (cell 
size), yp: select the minimum value
To explore shape effects: minimize with 
respect   to   deformation   (constrained 
calculation)



Context...

Our calculation is continuing on from 
where others left off…
Bonche and  Vautherin,  Nucl Phys 
A372 (1981), A&A  115  (1982):  1-D 
HF  calculations  in the Wigner-Seitz 
approximation, finite T
Hillebrandt and Wolff (1985) conduct 
supernova  simulations based on the 
resultant EOS



Context…

1-D Skyrme-HF EOS in supernova simulations



Bonche and Vautherin

Neutron gas and nuclei coexist self-
consistently…

…and the bubble phase too



Context…

Magierski and Heenen PRC65 045804 
(2001): 3-D   HF  calculation of nuclear 
shapes at  bottom of neutron star crust
at zero T
When treated in 3 dimensions, series
of shape transitions become complex



Context: Magierski and Heenen



Context… Magierski and Heenen

• Rapid fluctuation of energy
difference  between  phases
with density
• Fluctuation is from shell
energy  of  the   unbound
neutrons:  a  Casimir-like
Effect
• Confirmed by comparing
with shell    energy of
neutrons in semi-classical 
approx. 
• Such effects may even
reverse  order  of  phase
transitions



Preliminary Results

A=120 Z=0.25, T=0MeV, nb = 0.007fm-3
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Preliminary Results

A=120 Z=0.25, T=2.5 MeV, nb = 0.007fm-3
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Preliminary Results
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Preliminary Results
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EOS of Uniform nuclear matter
S=1, Yp = 0.3
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Summary

We are constructing a self-consistent EOS 
using Skyrme-HF in 3D
Will take into account the temperature and 
density effects on 3D nuclear shapes
Basic testing of the code is complete
First set of calculations (minimization w.r.t
mass number) under way
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