Symmetry energy for excited nuclei produced by multifragmentation Akira Ono (Tohoku University, Sendai, Japan)

Astrophysical environments

Equation of State

Liquid-gas phase transition

Flow etc

Multifragmentation

- Quantum statistics in AMD. ($E^* = aT^2$)
- Any equilibrium in collisions?
 - \Rightarrow Nuclear symmetry free energy

The first version of AMD (before 1995)

A Slater determinant of Gaussian wave packets

$$|\Phi(\mathbf{Z})\rangle = \det_{ij} \left[\exp\left\{ -\nu (\mathbf{r}_i - \mathbf{Z}_j / \sqrt{\nu})^2 \right\} \chi_{\alpha_j}(i) \right]$$

$$\mathbf{Z}_i = \sqrt{\nu} \mathbf{D}_i + \frac{i}{2\hbar \sqrt{\nu}} \mathbf{K}_i$$

- v: Width Parameter = 0.16 fm⁻²
- χ_{α_i} : Spin-Isospin States = $p \uparrow, p \downarrow, n \uparrow, n \downarrow$

Time Dependent Variational Principle for $\{Z_1(t), \ldots, Z_A(t)\}$

$$\delta \int dt \, \frac{\langle \Phi(\mathbf{Z}) | (i\hbar \frac{d}{dt} - H) | \Phi(\mathbf{Z}) \rangle}{\langle \Phi(\mathbf{Z}) | \Phi(\mathbf{Z}) \rangle} = \mathbf{0} \qquad \Rightarrow \quad i\hbar \sum_{j\tau} C_{i\sigma,j\tau} \frac{dZ_{j\tau}}{dt} = \frac{\partial \mathcal{H}}{\partial Z_{i\sigma}^*}$$
Wave packet motion in the mean field
H: Effective Hamiltonian

+ Two-nucleon collisions (as in other simulation methods)

Nuclear structure

Density of B-isotpes ρ_p ρ_n ρ 13 B ¹⁵ B ¹⁷B 19 B

Kanada-En'yo et al.

BE(N, Z) - 8A MeV

AMD wave function

$$|\Phi(\mathbf{Z})\rangle = \det_{ij} \left[\exp\left\{ -\nu (\mathbf{r}_i - \mathbf{Z}_j / \sqrt{\nu})^2 \right\} \chi_{\alpha_j}(i) \right]$$

Statistics in AMD

Solve the time evolution of many nucleon system contained in a box.

Statistical ensemble (E, V)

Energy balance between liquid and gas

- Internal energy of nuclei: $(E/A)_{\text{liquid}}$
- Energy of gas nucleons: $E_{gas} = \frac{3}{2}T$

Ono and Horiuchi, PRC53 (1996) 2341. ACS Meeting (2004.08.25) - p.4/20

How to get quantum statistics

- Fluctuation or stochasticity. (Ohnishi and Randrup)
- Dynamics of wave packet widths. (Schnack and Feldmeier)
- Quantum branching \leftarrow dynamics of wave packet shape. (Ono and Horiuchi)

AMD wave function for each branch

$$\langle \mathbf{r}_1 \dots \mathbf{r}_A | \Phi(Z) \rangle = \det_{ij} \Big[\exp \Big\{ -\nu \Big(\mathbf{r}_j - \frac{\mathbf{Z}_i}{\sqrt{\nu}} \Big)^2 \Big\} \chi_{\alpha_i}(j) \Big]$$

Stochastic equation of motion

$$\frac{d}{dt}\mathbf{Z}_i = \{\mathbf{Z}_i, \mathcal{H}\}_{\mathsf{PB}} + (\mathsf{NN \ coll}) + \Delta \mathbf{Z}_i(t)$$

Mean field + Quantum branching

At each time step t_0 , for each wave packet k, \ldots

Mean field propagation for $t_0 \rightarrow t_0 + \tau$

+ Branching at
$$t_0 + \tau$$
 τ :

Coherence time

$$t = t_{0} \qquad t = t_{0} + \tau$$

$$|\mathbf{Z}_{k}\rangle\langle\mathbf{Z}_{k}|_{\overrightarrow{\text{Mean field}}}|\psi_{k}\rangle\langle\psi_{k}|_{\overrightarrow{\text{Branching}}} \int |\mathbf{z}\rangle\langle\mathbf{z}| w_{k}(\mathbf{z})d\mathbf{z} \qquad \text{for } k = 1, \dots, A$$

$$\overbrace{\mathbf{M}}_{dt}^{\tau}|\psi_{k}(t)\rangle = h^{\mathsf{HF}}|\psi_{k}(t)\rangle$$

$$\frac{\partial f_{k}}{\partial t} = -\frac{\partial h^{\mathsf{HF}}}{\partial \mathbf{p}} \cdot \frac{\partial f_{k}}{\partial \mathbf{r}} + \frac{\partial h^{\mathsf{HF}}}{\partial \mathbf{r}} \cdot \frac{\partial f_{k}}{\partial \mathbf{p}}$$

$$|\Phi(Z)\rangle\langle\Phi(Z)| \qquad |\Psi\rangle\langle\Psi|_{\overrightarrow{\mathsf{Branching}}} \int |\Phi(z)\rangle\langle\Phi(z)| w(z)dz \xrightarrow{c_{1}}|\overset{\bullet}{\bullet}\rangle + c_{1}|\overset{\bullet}{\bullet}\rangle + c_{1}|\overset{\bullet}{\bullet$$

Statistics in AMD

Solve the time evolution of many nucleon system contained in a box.

Statistical ensemble (E, V)

Energy balance between liquid and gas

- Internal energy of nuclei: $(E/A)_{\text{liquid}}$
- Energy of gas nucleons: $E_{gas} = \frac{3}{2}T$

Ono and Horiuchi, PRC53 (1996) 2341. ACS Meeting (2004.08.25) – p.7/20

Study of liquid-gas phase transition

Microcanonical ensemble \leftarrow Long-time solution of AMD

Gogny force (consistent with saturation property)
 Microcanonical temperature T (⇐ isolated nucleons)

$$\frac{1}{T} = \frac{\partial S(E)}{\partial E} = \left\langle \frac{\partial S_{\rm iso}(E_{\rm iso})}{\partial E_{\rm iso}} \right\rangle_E = \left\langle \frac{\frac{3}{2}N_{\rm iso} - 1}{E_{\rm iso}} \right\rangle_E \approx \frac{3}{2} \left\langle \frac{E_{\rm iso}}{N_{\rm iso}} \right\rangle_E^{-1}$$

Pressure P (\Leftarrow reflection at the wall)

AMD results for fragmentation

${}^{40}Ca + {}^{40}Ca$ at 35 MeV/u, b = 0

AMD with $\tau \rightarrow 0$.

Xe + Sn at 50 MeV/u, $0 \le b \le 4$ fm

Charge distribution

• AMD/D ($\tau = 0$)

• AMD/DS (finite τ)

Can we find any "equilibrium" in dynamical collisions?

AMD, *t* = 300 fm/*c*

Isoscaling

- Fragment yeilds from two systems

1: ⁴⁰Ca + ⁴⁰Ca at 35 MeV/u

2:
60
Ca + 60 Ca at 35 MeV/u $rac{Y_2(N,Z)}{Y_1(N,Z)} \propto e^{\alpha N + \beta Z}$

The fragment isospin composition is largely governed by a statistical law.

 ${}^{60}Ca + {}^{60}Ca / {}^{40}Ca + {}^{40}Ca$ e^{1.83 N - 2.31 Z} Gogny 10² Y₆₀(N,Z) / Y₄₀(N,Z) 10¹ 10⁰ 10 10^{-2} e^{1.60 N - 2.06 Z} Gogny-AS 10² Y₆₀(N,Z) / Y₄₀(N,Z) 10¹ 10⁰ 10 10^{-2} 2 10 12 6 N

A statistical relation in the simulation results

A statistical relation between

 \checkmark the isoscaling parameter α

• the fragment isospin asymmetry $(Z/A)_{lig}^2$

$$\frac{\alpha_{21}}{(Z/A)_{\text{liq},1}^2 - (Z/A)_{\text{liq},2}^2} = \frac{4C}{T}$$

C: Symmetry energy coefficient

Ono, Danielewicz, Friedman, Lynch, Tsang, PRC 68, 051601(R) (2003) ACS Meeting (2004.08.25) – p.12/20

Fragment yields and nuclear free energies

Isoscaling
$$Y_{NZ}^{(1)}/Y_{NZ}^{(2)} \propto e^{\alpha N + \beta Z}$$

• Relation
$$\alpha / \Delta (Z/A)^2 = 4C/T$$

Fragment yields
$$Y_{NZ} \propto \exp\left[-\frac{G_{NZ}(T,P)}{T} + \frac{\mu_n}{T}N + \frac{\mu_p}{T}Z\right]$$

 $Y_{NZ} \Rightarrow G_{NZ}$ (symmetry energy)

Liquid drop form $G_{NZ}(T, P) = f(A)A + c(A)\frac{(N-Z)^2}{A} +$ Coulomb

Fragment yields ⇒ Symmetry energy

 $Y_i(N, Z)$ from many systems

- *i* = 1: ⁴⁰Ca + ⁴⁰Ca
- *i* = 2: ⁴⁸Ca + ⁴⁸Ca
- *i* = 3: ⁶⁰Ca + ⁶⁰Ca
- *i* = 4: ⁴⁶Fe + ⁴⁶Fe

By employing isoscaling,

 $Y_1(N,Z)$

$$\approx Y_2(N,Z) e^{-\alpha_2 N - \beta_2 Z}$$

 $\approx Y_3(N,Z) e^{-\alpha_3 N - \beta_3 Z}$

$$\approx Y_4(N,Z) e^{-\alpha_4 N - \beta_4 Z}$$

$$K(N,Z) = \xi(Z)N + \eta(Z) + \zeta(Z)\frac{(N-Z)^2}{N+Z} = \frac{G_{\text{nuc}}(N,Z)}{T} - \frac{\mu_n}{T}N - \frac{\mu_p}{T}Z$$

Symmetry energy coefficient in G_{nuc} is $C(Z) = T\zeta(Z)$

 $\equiv e^{-K(N,Z)}$

Size dependence of symmetry energy

Surface effect is very weak.

Previous work \Rightarrow T = 3.4 MeV $C(Z) = T\zeta(Z)$

Why is the surface effect missing?

Because of finite T?

$$G_{NZ}(T,P) = f(A,T,P)A + c(A,T,P)\frac{(N-Z)^2}{A} + \text{Coulomb}$$

$$f(A,T,P) = a_v(T,P) + a_s(T,P)A^{-1/3}, \qquad c(A,T,P) = c_v(T,P) + c_s(T,P)A^{-1/3}$$

$$c_s(T) = \left[1 - \left(\frac{T}{T_c}\right)^2\right]^2 c_s(T=0) \sim 0.9 \times c_s(T=0) \quad \text{for } T = 3.4 \text{ MeV}$$
Lattimer et al., NPA535, 331(1991)

Because of the fragmentation dynamics?

Summary

- AMD with quantum branching
 - Quantum statistics
 - $E^* \approx aT^2$, Liquid-gas phase transition
 - Fragmentation in dynamical nuclear collisions
- Nuclear collisions \Rightarrow Isoscaling and symmetry energy
 - \checkmark Symmetry energy at $\rho\sim$ 0.08 fm^{-3} for $T\sim$ 3.4 MeV
 - Surface effect is weak for the symmetry energy. ⇒ Y(N, Z) is directly related to bulk symmetry energy.

A relation under equilibrium

EXAMPLE Under given *T*, *P*, $(N_i^{\text{tot}}, Z_i^{\text{tot}})$ Yield of nucleus (N, Z)

$$Y_i(N,Z) = Y_{0i} \exp\left[-\left(G_{\text{nuc}}(N,Z) - \mu_{ni}N - \mu_{pi}Z\right)/T\right]$$

 $G_{nuc}(N, Z; T, P)$: Free energy of a nucleus

For each Z, the most probable value of N: $\overline{N}_i(Z)$

ר

$$\frac{\partial}{\partial N} [G_{\text{nuc}}(N, Z) - \mu_{ni}N - \mu_{pi}Z] \Big|_{N=\bar{N}_i(Z)} = 0$$

$$\Downarrow \quad (i = 1) - (i = 2)$$

$$\frac{\alpha}{[Z/\bar{A}_1(Z)]^2 - [Z/\bar{A}_2(Z)]^2} = 4C(Z)/T \quad C(Z) \approx c_v + c_s \bar{A}(Z)^{-1/3}$$

Isoscaling

 $Y_2(N,Z)/Y_1(N,Z) \propto e^{\alpha N + \beta Z}$

 $\alpha = (\mu_{n2} - \mu_{n1})/T$

 $\beta = (\mu_{p2} - \mu_{p1})/T$

 $G_{\rm nuc}(N,Z) = a_{\rm v}A + a_{\rm s}A^{2/3} + a_{\rm c}Z^2A^{-1/3} + [c_{\rm v}A + c_{\rm s}A^{2/3}]\left(\frac{N-Z}{A}\right)^2 + \cdots$

Langevin-like equation of motion

Equation of motion for the wave packet centroids

$$\frac{d}{dt}\mathbf{Z}_{i} = \{\mathbf{Z}_{i}, \mathcal{H}\} + \Delta \mathbf{Z}_{i}(t) + \mu \left(\mathbf{Z}_{i}, \mathcal{H} + \sum_{m} \beta_{m} \mathbf{Q}_{m}\right) + \text{NN-Collision}$$

If Z_i were canonical for simplicity,

$$\{\mathbf{Z}_{i}, \mathcal{H}\} = \frac{1}{i\hbar} \frac{\partial \mathcal{H}}{\partial \mathbf{Z}_{i}^{*}}$$
$$\overline{\Delta Z_{ia}(t)} = \mathbf{0}, \qquad \overline{\Delta Z_{ia}(t)\Delta Z_{jb}(t)} = D_{iab}(t)\delta_{ij}\delta(t-t')$$
$$(\mathbf{Z}_{i}, \mathcal{H}') = \frac{1}{\hbar} \frac{\partial \mathcal{H}'}{\partial \mathbf{Z}_{i}^{*}}$$

- Legendre parameters β_m are determined so that Q_m are not changed by the $(\mathbf{Z}_i, \mathcal{H}')$ term.
- \checkmark μ is determined by the total energy conservation.