Nuclear Equation of State used in Astrophysics Models

Philadelphia, 25.8.2004

Compact binary mergers:

the influence of the equation of state

S. Rosswog

further information:

http://www.faculty.iu-bremen.de/srosswog

I.1 Why compact binary systems?

- Physics of Nuclear Matter:
 - * high $T \Rightarrow$ heavy ion collisions
 - * low $T \implies$ neutron stars
- Nucleosynthesis:

* formation of neutron-rich, rapid neutron capture
 elements

- Gravitational Waves:
 - * large rates: $\sim 10^{-4}$ (year galaxy) $^{-1}$
 - * large, predictable (initial phase) GW-amplitudes
 - \Rightarrow good detection prospects
- Gamma-ray Bursts:

* "NS-NS & NS-BH mergers

 \Rightarrow BH + massive accretion disk = GRB-engine"

I.2 Observed Neutron Star Binaries

- so far: six observed systems
- most precise observation: <u>PSR1913+16</u> (Hulse & Taylor 1974)

* discovered in 1974 by R.Hulse and J.Taylor \rightarrow NP 1993

1.442 and 1.386 M_{\odot} \pm 0.0002 $\ensuremath{\mathsf{M}_{\odot}}$ ***masses:**

*orbital period:

$$\tau_{orb} = 7.752 \text{ h} (\text{v} \sim 10^{-3} c)$$

*pulsar period:

10 0

 $\mathsf{P}_{PSR} = 59 \text{ ms}$

***excentricity**:

e = 0.617

*periastron advance: $\dot{\omega} = 4.227^{\circ}y^{-1}$ (> $(\dot{\omega})_{Mer} = 0.43^{''}y^{-1}$)

 $\sim 10 \ \mathrm{kpc}$

*distance:

*orbital decay: agreement with GR-prediction: 0.21 % (2004)

*inspiral time:

 \rightarrow final coalescence !

- most relat. system: <u>PSR J0737-3039A+B</u> (Burgay et al.2003)
 - * both are pulsars !
 - 1.337 and 1.250 M_\odot \pm 0.005 $\ensuremath{\text{M}_\odot}$ * masses:
 - * orbital period: \mathcal{T}
 - * pulsar periods:

$$au_{orb} = 2.4$$
 h

- $P_A = 22.7 \text{ ms \& } P_B = 2.8 \text{ s}$
- * excentricity: e = 0.09
- * periastron advance: $\dot{\omega} = 17 \ ^{o}y^{-1}$
- * distance: $\sim 600 - 1000 \ {\rm pc}$
- * coalescence:

in $8.5 \cdot 10^7$ years

 \Rightarrow merger rate : $R_{\rm DNS} \sim 10^{-4}$ (year galaxy) $^{-1}$

 \Rightarrow ground-based gravitational detectors (LIGO, GEO600, TAMA ...) should observe

 \Rightarrow one DNS merger event every few years !

I.3 Gamma Ray Bursts (GRBs)

* accidental discovery by satellites in the sixties

- * gamma ray sky:
- * rate: \sim 1/day (BATSE)
- * isotropic distribution

(ii) **Duration**

bimodal: (α) short Bursts ~ 0.2 s compact binary mergers

> (β) long Bursts ~ 30 s collapsing stars ("collapsars")

(iii) "standard" central engine:

BH + accretion disk

(iv) Most Popular Mechanisms (to produce beamed, relativistic outflow)

- (α) Magnetohydrodynamics (MHD)
- $(\beta) \quad \nu_i + \bar{\nu}_i \to e^+ + e^-$

II. Modeling compact binary systems:

- intrinsically 3D process → numerical modelling
- high sound velocities: $c_s \sim 0.3c$

Courant-Friedrichs-Lewy stability criterion:

 $\Delta t < \frac{\Delta x}{c_s} = 10^{-6} s \left(\frac{\Delta x}{1km} \right) \left(\frac{0.3c}{c_s} \right) \quad \text{short time steps !} \\ \text{-> can only simulate "short physical time scales"} \\ \text{-> need powerful computer}$

- ideally:
 - * "the true equation of state"
 - * 3D neutrino transport
 - * 3D general relativistic magneto-hydrodynamics (with time variable metrics)
 - * numerical resolution of all relevant scales

```
*
```

. . .

(i) Hydrodynamics:

3D Lagrangian particle scheme (SPH), fully parallelized (Rosswog & Davies 2002)

(i) Hydrodynamics:

3D Lagrangian particle scheme (SPH), fully parallelized (Rosswog & Davies 2002)

(ii) Gravity:

Newtonian <u>self-gravity</u> (e.g. Benz 1990) + gravitational wave backreaction forces

(quadrupole approximation; for details Rosswog et al. 2002)

(i) Hydrodynamics:

3D Lagrangian particle scheme (SPH), fully parallelized (Rosswog & Davies 2002)

(ii) Gravity:

Newtonian <u>self-gravity</u> (e.g. Benz 1990) + gravitational wave backreaction forces

(quadrupole approximation; for details Rosswog et al. 2002)

(iii) Nuclear physics:

temp. and compos. dependent, nuclear <u>EOS</u> (Relativistic Mean Field theory; Shen et al. 1998a,b)

(i) Hydrodynamics:

3D Lagrangian particle scheme (SPH), fully parallelized (Rosswog & Davies 2002)

(ii) Gravity:

Newtonian <u>self-gravity</u> (e.g. Benz 1990) + gravitational wave backreaction forces

(quadrupole approximation; for details Rosswog et al. 2002)

(iii) Nuclear physics:

temp. and compos. dependent, nuclear <u>EOS</u> (Relativistic Mean Field theory; Shen et al. 1998a,b)

(iv) Neutrino physics:

multi-flavour neutrino leakage scheme (Rosswog & Liebendörfer 2003)

III. Results: the role of the EOS III.1 Neutron Star Binaries

• Morphology:

 \Rightarrow system becomes dynamically unstable

- "stiff EOS": instability at large separations
- "soft EOS":
- even "contact config's" possible ($\Gamma \leq 2$) \Rightarrow visible in GW-signal
- spiral arms:

. – p.12/20

- <u>central object</u>: differentially rotating, $\sim 2.5 \text{ M}_{\odot}$
 - "soft EOS": immediate collapse to black hole
 "stiff EOS": metastable "super neutron star" possible

(complicated by time scale to remove diff. rot.; viscosity, GW, magnetic fi elds....)

- neutron-rich ejecta:
 - "stiff EOS": $\sim 0.01~M_{\odot}$ ejected per event (Shen et al. EOS 1998)
 - "soft EOS": no resolvable mass loss $(\Gamma = 2$ -polytrope)

III.2 Neutron Star Black Hole Binaries

- supposed to yield "standard GRB central engine": BH + massive torus
- complex accretion dynamics (sensitive to EOS !)

determined by

- Mass transfer \Rightarrow increase orbital separation
- GW emission \Rightarrow reduce orbital separation
- Reaction of NS to mass loss:

 $\frac{dR_{ns}}{dM} < 0 \Rightarrow$ "ns expands" \Rightarrow increase mass transfer $\frac{dR_{ns}}{dM} > 0 \Rightarrow$ "ns shrinks" \Rightarrow decrease mass transfer

Accretion Dynamics in Neutron Star Black Hole Binaries:

column density, Newtonian gravity, corotation, mass ratio q= 0.1

* for shown run (q= 0.1, corotation):

 \Rightarrow "survival of mini-NS visible in GW-signal"

Implications for GRBs

disks NS-BH

- masses, $< 10^{-2} \text{ M}_{\odot} \iff \sim 0.2 \text{ M}_{\odot}$
- densities [g cm^-3] $10^8 < \rho < 10^{11} \iff 10^{11} < \rho < 10^{13}$
- temperatures, $\sim 2.5 \text{ MeV} \iff \sim 4 \text{ MeV}$
- neutrino emission, $\sim 10^{52}$ erg/s $\iff \sim 2 \cdot 10^{53}$ erg/s

therefore:

- inefficient neutrino annihilation ($Q_{\nu\bar{\nu}} \propto L_{\nu_i} L_{\bar{\nu}_i}$)
- difficult to anchor strong magnetic fields in disk
 - \Rightarrow "pessimistic prospects for GRBs"

Sensitivity to EOS

 \Rightarrow complete disruption, massive disk

Summary

Neutron star mergers:

various aspects sensitive to EOS:

- morphology: spiral arms etc.
- stability central object
- amount neutron-rich ejecta
- neutrino emission
- ...

Neutron star black hole mergers:

- extremely complex accretion dynamics
- dynamics very sensitive to EOS
- "hard" EOS used (relativistic mean fi eld, Shen et al. 1998a,b):
 - "mini-neutron" star survives
 - difficult to form accretion disk

 \Rightarrow good news for GW-detection, bad news for GRBs The Astrophysicist's whish list

for the EOS

• temperature dependence $0 < T < \sim 100 \text{ MeV}$

• NO β -equilibrium $0 < Y_e < \sim 0.5$

• large density range $\sim 10^3 < \rho < \sim 10^{15} {\rm g/cm^3}$