
NSCL-MSU 1'

&

$

%

Nuclear Symmetry Energy
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Volume & Surface Symmetry Energy

Bethe-Weizsäcker formula: ∝ A

E = −aV A + aS A2/3 + aC
Z2

A1/3
+ aA

(N − Z)2

A
+ δ

No surface symmetry energy. . .

Surface energy: ES = aS A2/3 =
aS

4π r2
0

4π r2
0 A2/3 =

aS

4π r2
0

S
ES

S = σ =
aS

4π r2
0

(tension – work per area)

→ As nucleons at surface less bound, creating surface requires work.

Symmetry energy reduces the binding, so, as n-p asymmetry
increases, the work to create surface should drop (you cannot
subtract same thing twice from volume!)

σ =
∂ ES

∂ S ↘ (in the general definition of tension)
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σ as intensive should depend on an intensive quantity
characterizing neutron-proton (n-p) asymmetry → µA

µA =
∂ E

∂ (N − Z)

Since tension should drop no matter whether more neutrons or
protons → quadratic in chemical potential

σ = σ0 − γ µ2
A

Surface energy ES must then also depend on µA. . .

Thermodynamic consistency then requires:
Surface must contain n-p excess!

(NS − ZS) ∝ µA

Surface energy must be quadratic in the excess and/or µA.
?How can surface hold particles?!
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Gibbs definition for surface
quantities - difference be-
tween actual and idealized
where volume contribution
only: FS = F − FV

result depends on surface
position R

→ AS = A−AV = 0

2-component system: sur-
faces for neutrons and pro-
tons may be displaced.

Net surface position set de-
manding: AS = 0.

However, NS − ZS 6= 0!
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With thermodynamic consistency resolved, σ = σ0 − γ µ2
A yields for

surface energy

ES = σ0 S + γ µ2
A S = E0

S +
1
4γ

(NS − ZS)2

S

= E0
S + aS

A

(NS − ZS)2

A2/3
(surface capacitor)

Volume similarly: EV = E0
V +aV

A

(NV − ZV )2

A
(volume capacitor)

Net Energy & Asymmetry: E = ES+EV , N−Z = NS−ZS+NV−ZV

Minimization of E with respect to the asymmetry partition:
analogous to coupled capacitors, qX = NX − ZX ,
EX = E0

X + q2
X/2CX , with the result

E = E0 +
q2

2C
= E0 +

(N − Z)2
A
aV

A

+ A2/3

aS
A

volume capacitance surface capacitance
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Modified Binding Formula

E = −aV A + aS A2/3 + aC
Z2

A1/3
+

aV
A

1 + A−1/3 aV
A/aS

A

(N − Z)2

A

aA(A)

Regular formula for aV
A/aS

A = 0 - i.e. surface not accepting the
asymmetry excess (aS

A = ∞) - or for A →∞.
Modified formula: weakening of the symmetry term for low A.

Whether one can replace aA(A) by aV
A for large A depends on the

ratio aV
A/aS

A.

The ratio may be determined from surface asymmetry excess, as
surface-to-volume asymmetry ratio:

NS − ZS

NV − ZV
=

CS

CV
=

A2/3/aS
A

A/aV
A

= A−1/3 aV
A/aS

A



NSCL-MSU 7'

&

$

%

Asymmetry Skins
Measurements of n-p skin sizes difficult: two different probes
required.
E.g. electrons + protons, π+ + π−, protons + neutrons

Issues:
1. Data expressed in terms of difference of n and p rms radii.
Conversion straightforward, if diffuseness similar for n and p.
2. For heavy nuclei, Coulomb competes with symmetry energy,
pushing protons out.
⇒ minimize sum of 3 energies w/respect to asymmetry:

E = EV + ES + EC EC =
e2

4πε0

1
R

(
3
5

Z2
V + ZV ZS +

1
2

Z2
S

)

From the modified minimization, analytic difference of rms radii:

〈r2〉1/2
n − 〈r2〉1/2

p

〈r2〉1/2
=

A

6NZ

N − Z

1 + A1/3 aS
A/aV

A

− aC

168aV
A

A5/3

N

10
3 + A1/3 aS

A/aV
A

1 + A1/3 aS
A/aV

A

symmetry energy only Coulomb correction
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Test of the macroscopic formula

Comparison of the
formula (lines) with a
multitude of nonrela-
tivistic and relativistic
mean-field calculations
by Typel and Brown
PRC64(01)027302
(symbols)

Accuracy, in reproducing microscopic theory, of ∼0.01 fm ?!

⇒ next data
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Systematic of n-p skin sizes for different Na isotopes by Suzuki et
al., PRL75(95)3241 + other data

difference between the rms n and p radii vs A

aV
A/aS

A ∼ 3
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Global fit to skin data

1-σ & 2-σ limits on aV
A/aS

A as a function of aV
A :

dependence on aV
A due to Coulomb

As A−1/3 aV
A/aS

A never small, symmetry term not expandable;
Bethe-Weizsäcker not acceptable at the macroscopic level.
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Charge Invariance
Conclusions on details in the symmetry term, following
mass-formula fits, are, unfortunately, interrelated with conclusions
on details in other terms: isospin-dependent Coulomb, Wigner &
pairing + isospin-independent, due to (N − Z)/A - A correlations
along the line of stability (PD NPA727(03)233)!

Best would be to study the symmetry term in isolation from the
rest of mass formula! Absurd?!

Charge invariance comes to rescue: nuclear states characterized by
different isospin values (T ,Tz), Tz = (Z −N)/2. Nuclear energy
scalar in isospin space:

EA = aA(A)
(N − Z)2

A
= 4 aA(A)

T 2
z

A

→ EA = 4 aA(A)
T 2

A
= 4 aA(A)

T (T + 1)
A
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→ EA = 4 aA(A)
T (T + 1)

A

In the ground state T takes on the lowest possible value
T = |Tz| = |N − Z|/2. Through ’+1’ most of the Wigner term absorbed.

Formula generalized to the lowest state of a given T . Pairing term,
in the generalization, contributes depending on evenness of T .
?Lowest state of a given T : isobaric analogue state (IAS) of some
neighboring nucleus ground-state.

T=0

T=1

Study of changes in the symmetry term possible within one nucleus
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In the same nucleus, when pairing drops out:

E2(T2)− E1(T1) =
4 aA

A

{
T2(T2 + 1)− T1(T1 + 1)

}

?

a−1
A (A) =

4 ∆T 2

A ∆E
= (aV

A)−1 + (aS
A)−1 A−1/3

IAS analysis with largest available energy differences used:



NSCL-MSU 14'

&

$

%

Fit combination

Conclusions: 31MeV . aV
A . 33MeV, 2.7 . aV

A/aS
A . 3.0

next: Symmetry-coeff ratio constraints low-ρ dependence of EA.
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Microscopic Background
In Thomas-Fermi approx with E = E0 +

∫
d3r ρ EA(ρ)

(
ρn−ρp

ρ

)2

,

where EA - symmetry energy (EA(ρ0) = aV
A), Gibbs prescription for

semiinfinite matter yields:

⇒ aV
A/aS

A probes shape of EA(ρ)!

aV
A

aS
A

=
3
r0

∫
dr

ρ(r)
ρ0

[
EA(ρ0)

EA(ρ(r))
− 1

]

For EA(ρ) ≡ aV
A , aV

A/aS
A = 0!

Surface capacitance emerges,
because EA drops with ρ.

From 2.7 . aV
A/as

A . 3.0
for mean-field structure calcs
(Furnstahl, NPA706(02)85 -
symbols), we deduce symmetry
energy reduction at half the
normal density:

0.58 . EA(ρ0/2)/aV
A . 0.68
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Consequences for neutron stars

Pressure estimate from EA(ρ) + Lattimer-Prakash scaling,
R P 1/4 ' const, yields 11.7 km . R . 13.7 km for an 1.4 M¯ star.

Density dependence appears too weak for the direct Urca cooling.

Mass formula performance

Fit residuals for light asymmetric nuclei, when either following the
Bethe-Weizsäcker formula (open symbols) or the modified formula
with aV

A/aS
A = 2.8 imposed (closed), i.e. the same parameter No.
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Conclusions

• Bringing macroscopic consistency introduces surface symmetry
energy into the binding formula, with the volume and surface
symmetry energies combining as energies of coupled capacitors.

• Formula scope gets extended; it predicts surface asymmetry
skins and weakening of the symmetry term for light nuclei.

• Skins restrict ratio of symmetry coefficients; charge invariance
allows to study symmetry term without leaving a nucleus.

• Skin/IAS fits: 31MeV . aV
A . 33MeV and 2.7 . aV

A/aS
A . 3.0

• Surface symmetry energy emerges due to a weakening of the
symmetry energy with density. aV

A/aS
A ratio places EA within

(0.58− 0.68)aV
A at ρ0/2. Consequences for neutron stars follow.

• Description of giant dipole resonances improves with an
inclusion of the surface symmetry energy. The resonances are
more of a GT type for light nuclei and of an SJ type for heavy.
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Asymmetry Oscillations
Movement of neutrons vs protons - giant resonances visible in
excitation cross sections
Two classical models of the simplest giant dipole resonance (GDR)

Goldhaber-Teller (GT): n & p distributions oscillate against each
other as rigid entities:

EGDR = ~Ω ∝
√

A2/3/A = A−1/6

Steinwedel-Jensen (SJ): Standing wave of n-p in the interior with
vanishing flux at the surface

EGDR = ~ca/λ ∝ A−1/3
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GT model: aV
a →∞ SJ model: aS

a →∞
Realistic model: SJ but asymmetry flux may flow in and out of the
surface. . . The boundary condition produces:

qR j1(qR) =
3 aS

a A1/3

aV
a

j′1(qR)

j1 - spherical Bessel func-
tion, typical for waves when
spherical symmetry; q -
wavenumber, EGDR = ~ ca q

As aS
a A1/3/aV

a changes, the
condition changes between
that of open and close pipe
and the resonance evolves
between GT and SJ
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Local Amplitude ≡ Transition Density

ρ1(r) =
DV

ρ0
j1(qr)

[
ρ(r)− aV

a

3 aS
a A1/3

r
dρ

dr

]

Compared to microscopic calculations (Khamerdzhiev et al.,
NPA624(97)328) GSC, including 2p-2h excitations and
ground-state correlations:
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Different Mass Formulas

Liquid droplet model (Myers & Swiatecki ’69)

E =
(
−a1 + J δ

2 − 1
2

K ε2 +
1
2

M δ
4
)

A

+
(
a2 + Q τ2 + a3 A−1/3

)
A2/3 + c1

Z2

A1/3

(
1 +

1
2

τ A−1/3

)

−c2 Z2 A1/3 − c3
Z2

A
− c4

Z4/3

A1/3

where

ε =
1
K

(
−2a2 A−1/3 + L δ

2
+ c1

Z2

A4/3

)
, τ =

3
2

J

Q

(
δ + δs

)

δ =
I + 3

8
c1
Q

Z2

A5/3

1 + 9
4

J
Q A−1/3

, δs = − c1

12J

Z

A1/3
, I =

N − Z

N + Z

Q = H/(1− 2
3 P/J). Expansion in asymmetry yields results

consistent with current, but approach more complex. . .
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The current formula:

E = −aV A + aS A2/3 + aC
Z2

A1/3
+ α

(N − Z)2

A

1
1 + α

β A−1/3

Liquid drop model [LDM] (Myers & Swiatecki ’66)

E = −aV

(
1− κV I2

)
A + aS

(
1− κS I2

)
A2/3

+aC
Z2

A1/3
− a4

Z2

A

with I = (N − Z)/A. LDM corresponds to the expansion in the
current formula:

1
A
α + A2/3

β

' α

A

(
1− α

β
A−1/3

)

But that expansion only accurate for A & 1000, i.e. never!


