Nuclear Symmetry Energy

P. Danielewicz, MSU-NSCL

- Volume \& Surface Symmetry Energy
- Modified Binding Formula
- Asymmetry Skins
- Charge Invariance
- Microscopic Background
- Conclusions

Volume \& Surface Symmetry Energy

Bethe-Weizsäcker formula: $\propto A$

$$
E=-a_{V} A+a_{S} A^{2 / 3}+a_{C} \frac{Z^{2}}{A^{1 / 3}}+a_{A} \frac{(N-Z)^{2}}{A}+\delta
$$

No surface symmetry energy...
Surface energy: $\quad E_{S}=a_{S} A^{2 / 3}=\frac{a_{S}}{4 \pi r_{0}^{2}} 4 \pi r_{0}^{2} A^{2 / 3}=\frac{a_{S}}{4 \pi r_{0}^{2}} \mathcal{S}$

$$
\frac{E_{S}}{\mathcal{S}}=\sigma=\frac{a_{S}}{4 \pi r_{0}^{2}} \quad(\text { tension }- \text { work per area })
$$

\rightarrow As nucleons at surface less bound, creating surface requires work.
Symmetry energy reduces the binding, so, as n-p asymmetry increases, the work to create surface should drop (you cannot subtract same thing twice from volume!)

$$
\sigma=\frac{\partial E_{S}}{\partial \mathcal{S}} \searrow \quad \text { (in the general definition of tension) }
$$

σ as intensive should depend on an intensive quantity characterizing neutron-proton (n-p) asymmetry $\rightarrow \mu_{A}$

$$
\mu_{A}=\frac{\partial E}{\partial(N-Z)}
$$

Since tension should drop no matter whether more neutrons or protons \rightarrow quadratic in chemical potential

$$
\sigma=\sigma_{0}-\gamma \mu_{A}^{2}
$$

Surface energy E_{S} must then also depend on $\mu_{A} \ldots$

Thermodynamic consistency then requires:
Surface must contain n-p excess!

$$
\left(N_{S}-Z_{S}\right) \propto \mu_{A}
$$

Surface energy must be quadratic in the excess and/or μ_{A}.
?How can surface hold particles?!

Gibbs definition for surface quantities - difference between actual and idealized where volume contribution only: $F_{S}=F-F_{V}$ result depends on surface position R

$$
\rightarrow A_{S}=A-A_{V}=0
$$

2-component system: surfaces for neutrons and protons may be displaced.
Net surface position set demanding: $A_{S}=0$.
However, $N_{S}-Z_{S} \neq 0$!

With thermodynamic consistency resolved, $\sigma=\sigma_{0}-\gamma \mu_{A}^{2}$ yields for surface energy

$$
\begin{aligned}
E_{S} & =\sigma_{0} \mathcal{S}+\gamma \mu_{A}^{2} \mathcal{S}=E_{S}^{0}+\frac{1}{4 \gamma} \frac{\left(N_{S}-Z_{S}\right)^{2}}{\mathcal{S}} \\
& =E_{S}^{0}+a_{A}^{S} \frac{\left(N_{S}-Z_{S}\right)^{2}}{A^{2 / 3}} \quad \text { (surface capacitor) }
\end{aligned}
$$

Volume similarly: $\quad E_{V}=E_{V}^{0}+a_{A}^{V} \frac{\left(N_{V}-Z_{V}\right)^{2}}{A} \quad$ (volume capacitor)
Net Energy \& Asymmetry: $E=E_{S}+E_{V}, \quad N-Z=N_{S}-Z_{S}+N_{V}-Z_{V}$
Minimization of E with respect to the asymmetry partition: analogous to coupled capacitors, $q_{X}=N_{X}-Z_{X}$, $E_{X}=E_{X}^{0}+q_{X}^{2} / 2 C_{X}$, with the result

$$
E=E^{0}+\frac{q^{2}}{2 C}=E^{0}+\frac{(N-Z)^{2}}{\frac{A}{a_{A}^{V}}+\frac{A^{2 / 3}}{a_{A}^{S}}}
$$

volume capacitance surface capacitance

Modified Binding Formula

$$
E=-a_{V} A+a_{S} A^{2 / 3}+a_{C} \frac{Z^{2}}{A^{1 / 3}}+\frac{a_{A}^{V}}{1+A^{-1 / 3} a_{A}^{V} / a_{A}^{S}} \frac{(N-Z)^{2}}{A}
$$

Regular formula for $a_{A}^{V} / a_{A}^{S}=0$ - i.e. surface not accepting the asymmetry excess $\left(a_{A}^{S}=\infty\right)$ - or for $A \rightarrow \infty$.
Modified formula: weakening of the symmetry term for low A.
Whether one can replace $a_{A}(A)$ by a_{A}^{V} for large A depends on the ratio a_{A}^{V} / a_{A}^{S}.

The ratio may be determined from surface asymmetry excess, as surface-to-volume asymmetry ratio:

$$
\frac{N_{S}-Z_{S}}{N_{V}-Z_{V}}=\frac{C_{S}}{C_{V}}=\frac{A^{2 / 3} / a_{A}^{S}}{A / a_{A}^{V}}=A^{-1 / 3} a_{A}^{V} / a_{A}^{S}
$$

Asymmetry Skins

Measurements of n-p skin sizes difficult: two different probes required.
E.g. electrons + protons, $\pi^{+}+\pi^{-}$, protons + neutrons

Issues:

1. Data expressed in terms of difference of n and p rms radii.

Conversion straightforward, if diffuseness similar for n and p .
2. For heavy nuclei, Coulomb competes with symmetry energy, pushing protons out.
\Rightarrow minimize sum of 3 energies $\mathrm{w} /$ respect to asymmetry:

$$
E=E_{V}+E_{S}+E_{C} \quad E_{C}=\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{R}\left(\frac{3}{5} Z_{V}^{2}+Z_{V} Z_{S}+\frac{1}{2} Z_{S}^{2}\right)
$$

From the modified minimization, analytic difference of rms radii:

$$
\frac{\left\langle r^{2}\right\rangle_{n}^{1 / 2}-\left\langle r^{2}\right\rangle_{p}^{1 / 2}}{\left\langle r^{2}\right\rangle^{1 / 2}}=\frac{A}{6 N Z} \frac{N-Z}{1+A^{1 / 3} a_{A}^{S} / a_{A}^{V}}-\frac{a_{C}}{168 a_{A}^{V}} \frac{A^{5 / 3}}{N} \frac{\frac{10}{3}+A^{1 / 3} a_{A}^{S} / a_{A}^{V}}{1+A^{1 / 3} a_{A}^{S} / a_{A}^{V}}
$$

Test of the macroscopic formula

Comparison of the formula (lines) with a multitude of nonrelativistic and relativistic mean-field calculations by Typel and Brown PRC64(01)027302 (symbols)

Accuracy, in reproducing microscopic theory, of $\sim 0.01 \mathrm{fm}$?!
\Rightarrow next data

Systematic of n-p skin sizes for different Na isotopes by Suzuki et al., PRL75(95)3241 + other data

difference between the rms n and p radii vs A

$$
a_{A}^{V} / a_{A}^{S} \sim 3
$$

Global fit to skin data

$1-\sigma$ \& 2- σ limits on a_{A}^{V} / a_{A}^{S} as a function of a_{A}^{V} :

dependence on a_{A}^{V} due to Coulomb
As $A^{-1 / 3} a_{A}^{V} / a_{A}^{S}$ never small, symmetry term not expandable; Bethe-Weizsäcker not acceptable at the macroscopic level.

Charge Invariance

Conclusions on details in the symmetry term, following mass-formula fits, are, unfortunately, interrelated with conclusions on details in other terms: isospin-dependent Coulomb, Wigner \& pairing + isospin-independent, due to $(N-Z) / A-A$ correlations along the line of stability (PD NPA727(03)233)!
Best would be to study the symmetry term in isolation from the rest of mass formula! Absurd?!

Charge invariance comes to rescue: nuclear states characterized by different isospin values $\left(T, T_{z}\right), T_{z}=(Z-N) / 2$. Nuclear energy scalar in isospin space:

$$
\begin{aligned}
& E_{A}=a_{A}(A) \frac{(N-Z)^{2}}{A}=4 a_{A}(A) \frac{T_{z}^{2}}{A} \\
& \rightarrow E_{A}=4 a_{A}(A) \frac{T^{2}}{A}=4 a_{A}(A) \frac{T(T+1)}{A}
\end{aligned}
$$

$$
\rightarrow E_{A}=4 a_{A}(A) \frac{T(T+1)}{A}
$$

In the ground state T takes on the lowest possible value $T=\left|T_{z}\right|=|N-Z| / 2$. Through ' +1 ' most of the Wigner term absorbed.

Formula generalized to the lowest state of a given T. Pairing term, in the generalization, contributes depending on evenness of T.
?Lowest state of a given T : isobaric analogue state (IAS) of some neighboring nucleus ground-state.

Study of changes in the symmetry term possible within one nucleus

In the same nucleus, when pairing drops out:

$$
\begin{gathered}
E_{2}\left(T_{2}\right)-E_{1}\left(T_{1}\right)=\frac{4 a_{A}}{A}\left\{T_{2}\left(T_{2}+1\right)-T_{1}\left(T_{1}+1\right)\right\} \\
a_{A}^{-1}(A)=\frac{4 \Delta T^{2}}{A \Delta E} \quad \stackrel{?}{=}\left(a_{A}^{V}\right)^{-1}+\left(a_{A}^{S}\right)^{-1} A^{-1 / 3}
\end{gathered}
$$

IAS analysis with largest available energy differences used:

Fit combination

Conclusions: $\quad 31 \mathrm{MeV} \lesssim a_{A}^{V} \lesssim 33 \mathrm{MeV}, \quad 2.7 \lesssim a_{A}^{V} / a_{A}^{S} \lesssim 3.0$ next: Symmetry-coeff ratio constraints low- ρ dependence of E_{A}.

Microscopic Background

In Thomas-Fermi approx with $E=E_{0}+\int d^{3} r \rho E_{A}(\rho)\left(\frac{\rho_{n}-\rho_{p}}{\rho}\right)^{2}$, where E_{A} - symmetry energy $\left(E_{A}\left(\rho_{0}\right)=a_{A}^{V}\right)$, Gibbs prescription for semiinfinite matter yields:
$\Rightarrow a_{A}^{V} / a_{A}^{S}$ probes shape of $E_{A}(\rho)!$ $\frac{a_{A}^{V}}{a_{A}^{S}}=\frac{3}{r_{0}} \int d r \frac{\rho(r)}{\rho_{0}}\left[\frac{E_{A}\left(\rho_{0}\right)}{E_{A}(\rho(r))}-1\right]$

For $E_{A}(\rho) \equiv a_{A}^{V}, a_{A}^{V} / a_{A}^{S}=0$!
Surface capacitance emerges, because E_{A} drops with ρ.

From $2.7 \lesssim a_{A}^{V} / a_{A}^{s} \lesssim 3.0$ for mean-field structure calcs (Furnstahl, NPA706(02)85 symbols), we deduce symmetry energy reduction at half the normal density:

$$
0.58 \lesssim E_{A}\left(\rho_{0} / 2\right) / a_{A}^{V} \lesssim 0.68
$$

Consequences for neutron stars

Pressure estimate from $E_{A}(\rho)+$ Lattimer-Prakash scaling, $R P^{1 / 4} \simeq$ const, yields $11.7 \mathrm{~km} \lesssim R \lesssim 13.7 \mathrm{~km}$ for an $1.4 M_{\odot}$ star. Density dependence appears too weak for the direct Urca cooling.

Mass formula performance

Fit residuals for light asymmetric nuclei, when either following the Bethe-Weizsäcker formula (open symbols) or the modified formula with $a_{A}^{V} / a_{A}^{S}=2.8 \mathrm{imposed}$ (closed), i.e. the same parameter No.

Conclusions

- Bringing macroscopic consistency introduces surface symmetry energy into the binding formula, with the volume and surface symmetry energies combining as energies of coupled capacitors.
- Formula scope gets extended; it predicts surface asymmetry skins and weakening of the symmetry term for light nuclei.
- Skins restrict ratio of symmetry coefficients; charge invariance allows to study symmetry term without leaving a nucleus.
- Skin/IAS fits: $31 \mathrm{MeV} \lesssim a_{A}^{V} \lesssim 33 \mathrm{MeV}$ and $2.7 \lesssim a_{A}^{V} / a_{A}^{S} \lesssim 3.0$
- Surface symmetry energy emerges due to a weakening of the symmetry energy with density. a_{A}^{V} / a_{A}^{S} ratio places E_{A} within (0.58-0.68) a_{A}^{V} at $\rho_{0} / 2$. Consequences for neutron stars follow.
- Description of giant dipole resonances improves with an inclusion of the surface symmetry energy. The resonances are more of a GT type for light nuclei and of an SJ type for heavy.

Asymmetry Oscillations

Movement of neutrons vs protons - giant resonances visible in excitation cross sections
Two classical models of the simplest giant dipole resonance (GDR)

Goldhaber-Teller (GT): n \& p distributions oscillate against each other as rigid entities:

$$
E_{G D R}=\hbar \Omega \propto \sqrt{A^{2 / 3} / A}=A^{-1 / 6}
$$

Steinwedel-Jensen (SJ): Standing wave of n-p in the interior with vanishing flux at the surface

$$
E_{G D R}=\hbar c_{a} / \lambda \propto A^{-1 / 3}
$$

GT model: $a_{a}^{V} \rightarrow \infty \quad$ SJ model: $a_{a}^{S} \rightarrow \infty$
Realistic model: SJ but asymmetry flux may flow in and out of the surface. . . The boundary condition produces:

$$
q R j_{1}(q R)=\frac{3 a_{a}^{S} A^{1 / 3}}{a_{a}^{V}} j_{1}^{\prime}(q R)
$$

j_{1} - spherical Bessel function, typical for waves when spherical symmetry; q wavenumber, $E_{G D R}=\hbar c_{a} q$

As $a_{a}^{S} A^{1 / 3} / a_{a}^{V}$ changes, the condition changes between that of open and close pipe and the resonance evolves between GT and SJ

Local Amplitude \equiv Transition Density

$$
\rho_{1}(r)=\frac{D_{V}}{\rho_{0}} j_{1}(q r)\left[\rho(r)-\frac{a_{a}^{V}}{3 a_{a}^{S} A^{1 / 3}} r \frac{d \rho}{d r}\right]
$$

Compared to microscopic calculations (Khamerdzhiev et al., NPA624(97)328) GSC, including 2p-2h excitations and ground-state correlations:

Different Mass Formulas

Liquid droplet model (Myers \& Swiatecki '69)

$$
\begin{aligned}
E= & \left(-a_{1}+J \bar{\delta}^{2}-\frac{1}{2} K \bar{\epsilon}^{2}+\frac{1}{2} M \bar{\delta}^{4}\right) A \\
& +\left(a_{2}+Q \tau^{2}+a_{3} A^{-1 / 3}\right) A^{2 / 3}+c_{1} \frac{Z^{2}}{A^{1 / 3}}\left(1+\frac{1}{2} \tau A^{-1 / 3}\right) \\
& -c_{2} Z^{2} A^{1 / 3}-c_{3} \frac{Z^{2}}{A}-c_{4} \frac{Z^{4 / 3}}{A^{1 / 3}}
\end{aligned}
$$

where

$$
\begin{gathered}
\bar{\epsilon}=\frac{1}{K}\left(-2 a_{2} A^{-1 / 3}+L \bar{\delta}^{2}+c_{1} \frac{Z^{2}}{A^{4 / 3}}\right), \quad \tau=\frac{3}{2} \frac{J}{Q}\left(\bar{\delta}+\bar{\delta}_{s}\right) \\
\bar{\delta}=\frac{I+\frac{3}{8} \frac{c_{1}}{Q} \frac{Z^{2}}{A^{5 / 3}}}{1+\frac{9}{4} \frac{J}{Q} A^{-1 / 3}}, \quad \bar{\delta}_{s}=-\frac{c_{1}}{12 J} \frac{Z}{A^{1 / 3}}, \quad I=\frac{N-Z}{N+Z}
\end{gathered}
$$

$Q=H /\left(1-\frac{2}{3} P / J\right)$. Expansion in asymmetry yields results consistent with current, but approach more complex...

The current formula:

$$
E=-a_{V} A+a_{S} A^{2 / 3}+a_{C} \frac{Z^{2}}{A^{1 / 3}}+\alpha \frac{(N-Z)^{2}}{A} \frac{1}{1+\frac{\alpha}{\beta} A^{-1 / 3}}
$$

Liquid drop model [LDM] (Myers \& Swiatecki '66)

$$
\begin{aligned}
E= & -a_{V}\left(1-\kappa_{V} I^{2}\right) A+a_{S}\left(1-\kappa_{S} I^{2}\right) A^{2 / 3} \\
& +a_{C} \frac{Z^{2}}{A^{1 / 3}}-a_{4} \frac{Z^{2}}{A}
\end{aligned}
$$

with $I=(N-Z) / A$. LDM corresponds to the expansion in the current formula:

$$
\frac{1}{\frac{A}{\alpha}+\frac{A^{2 / 3}}{\beta}} \simeq \frac{\alpha}{A}\left(1-\frac{\alpha}{\beta} A^{-1 / 3}\right)
$$

But that expansion only accurate for $A \gtrsim 1000$, i.e. never!

