

?

Multifragmentation

Supernova

?

Phenomenology

Angular Distributions Spectral Shapes Multiplicity Distributions Binomial Scaling Breakup Density Time Scale Charge Distributions

Thermodynamics

Caloric Curve (Negative Heat Capacity)

Scaling Laws Percolation Fisher Droplet Model

L. Beaulieu *et al.*, PRC 64, 064604 (2001) LABORATORY INVARIANT CROSS SECTION

160

L. Beaulieu et al., PRC, 63, 031302 (2001)

$$P_n^m(E^{\bigstar}) = \frac{m!}{n!(m-n)!} p^n(1-p)^{m-n}.$$

$$\langle n \rangle = mp$$
 and $\sigma_n^2 = \langle n \rangle (1-p)$.

E*/A =	2	3	4	5	6	7	8	9	MeV
Z _{src}	74.3	71.2	68.	65.	63.5	61.1	59.0	57.1	
m =	3.4	4.8	4 5.6	6.3	7	7.7	8.3	7.8	
Q =	-160	-204	-	-	-341	-383	-420	-451	
			249	295					

J. Pochodzalla et al., PRL 75, 1040 (1995)

J.B. Natowitz et al., PRC 65, 034618 (2002)

T = $[K_0(\rho/\rho_0)^{2/3}(E^*/A)]^{1/2}$ PRL (in press)

 $\left(\frac{A\Delta\mu}{T} - \frac{C_0 \in A^{\sigma}}{T}\right) \exp\left(\frac{E_{coul}}{T}\right)$

WHERE WE ARE

Liquid-gas phase transition Ubehavior in a strongly interacting, near symmetric two-component system has been characterized

WHERE WE NEED TO GO

- Determine self-consistent (critical parameters)
- Explore the neutron-proton degree of freedom
 - Define EOS for nuclear matter/supernova behavior

