

Jim Truran University of Chicago

■ We call attention to problems associated with the character of the two distinct r-process that may participate in the synthesis of nuclei below and above mass A~130-140.

Collaborators: K.-L. Kratz, B. Pfeiffer, J.J.Cowan, and C. SnedenNotre Dame UniversityJanuary 28, 2005

Tu P

(A success story of experimental nuclear physics.)

*r***-Process Sites and Timescales**

- □ The observation that r-process nuclei in solar abundance patterns characterize the oldest stars in our Galaxy virtually demands that the main astrophysical site is that associated with massive stars (SNe II) and/or their remnants.
 - □ Neutrino-driven winds from SNe II
 - □ Neutron star mergers
 - □ Shock processing of helium/carbon shells
- □ **Two sites with different timescales (??):** this has both attractive and problematic features

Nucleus	$\tau_{1/2} \\ (\text{Years})$	Daughter	Decay N Mode	ucleosynthesis Process
$^{40}\mathrm{K}$	$1.3 x 10^9$	^{40}Ca	β^-	s ⁻ / ?
$^{40}\mathrm{K}$	$1.3 { m x} 10^9$	$^{40}\mathrm{Ar}$	β^+	s ⁻ /?
$^{87}\mathrm{Rb}$	$4.9 \mathrm{x} 10^{10}$	$^{87}\mathrm{Sr}$	β^{-}	r-/ s-process
138 La	$1.1 \mathrm{x} 10^{11}$	$^{138}\mathrm{Ba}$	\mathbf{EC}	p-process
138 La	$1.1 x 10^{11}$	$^{138}\mathrm{Ce}$	β^-	p-process
$^{147}\mathrm{Sm}$	$1.1 \mathrm{x} 10^{11}$	¹⁴³ Nd	α	s-/ r-process
$^{176}\mathrm{Lu}$	$3.7 \mathrm{x} 10^{10}$	$^{176}\mathrm{Hf}$	β^{-}	s-process
$^{187}\mathrm{Re}$	$4.5 \mathrm{x} 10^{10}$	¹⁸⁷ Os	β^{-}	r-process
232 Th	$1.4 x 10^{10}$	$^{208}\mathrm{Pb}$	Decay Chain	r-process
$^{235}\mathrm{U}$	$7.0 \mathrm{x} 10^{8}$	$^{207}\mathrm{Pb}$	Decay Chain	r-process
²³⁸ U	$4.5 \mathrm{x} 10^9$	²⁰⁶ Pb	Decay Chain	r-process
¹⁰⁷ Pd	$6.5 x 10^{6}$	¹⁰⁷ Ag	β^{-}	s-/ r-process
$^{129}\mathrm{I}$	$1.6 x 10^{7}$	¹²⁹ Xe	β^{-}	r-process
$^{182}\mathrm{Hf}$	$9.0 \mathrm{x} 10^{6}$	^{182}W	β^{-}	r-process
²⁴⁴ Pu	$8.2 x 10^{7}$	$^{232}\mathrm{Th}$	Decay Chain / Sl	F r-process

Long-Lived Galactic Chronometers $(\tau_{1/2} \gtrsim 10^9 \text{ yr})$

- □ Uniform Nucleosynthesis of ¹²⁹I and ¹⁸²Hf: Wasserburg et al (1996) argue from the inconsistency of the behaviors of ¹²⁹I and ¹⁸²Hf for the possible existence of a second r-process that would produce most of the r-isotopes in the mass range A ≤ 130-140.
- The observed abundances in this range in metal-poor stars (e.g. CS 22892-052) appear to be consistent with such a view.

Fig. 1. Graph of $\log(N_i/N_{232_{Th}})$ versus $\log \overline{\tau}_i$. Full line corresponds to steady state with $P_i^{AC} = \text{const.}; \Delta$ for standard production ratios; \odot for uniform production over 10 \mathcal{R} ; and \boxdot the observed values.

(Wasserburg, Busso, & Gallino 1996)

- r-Process Enrichments in Halo Stars:
 Observations of extremely metal deficient halo stars confirm that the heavy r-process elements including the important actinide chronometers have a nucleosynthesis history that spans virtually the entirety of Galactic history.
- □ The robustness of the agreement over the mass range 130-140 ≤ A ≤ 210 is particularly significant. (The actinide region is less secure.)

r-Process Abundances in BD+17 3248

(Cowan et al. 2002) 2.00 1.50 Sr Се Sm Ρt 1.00 Ge Os Pb Ba Pd 0.50 Dy Nd Gd 0.00 Er ω bo -0.50 Ag Nb Pr Au -1.00 Eu Тb Th Ho -1.50 Ground-Based Data Τm U SS r-Process Abundances HST Data -2.00 -2.50 30 40 50 80 90

N-Capture Abundances in Globular Cluster M15

Abundances in Dwarf Spheroidal Galaxies

(Shetrone et al. 2003)

- We have calculated the r-process patterns for conditions of the waiting-point approximation, in the context of a model reflecting a distribution of neutron exposures, guided by our understanding of the nature of the yet unidentified astrophysical site. This yields:
 - **a** good fit to the solar system r-process pattern Ba to Pb;
 - a measure of the conditions for which the mass region A>140 is formed in solar proportions; and
 - a measure of the abundance ratio I/Ba as a function of the neutron exposure.
 - Our calculations indicate that, for conditions compatible with the "main" r-process producion of the Ba-to-Pb nuclei, the level of production of ¹²⁹I relative to barium is approximately 90-95 percent of its solar system value.

- The case for a second r-process for the mass region is supported by halo star observations, which indicate that the light r-nuclei in this regime are under produced over a broad range of conditions and [rprocess/Fe].
- □ For the studied r-process-rich stars, the observed ratio N(A<130)/N(A>130) is both approximately constant and systematically low with respect to solar r-process abundances. (Debris of the main r-process?)

- On the basis of an isotopic analysis of the metal poor ([Fe/H]=-2.4) halo star HD140283, Lambert and Prieto (2002) argue for an r-process origin for the barium in this star.
- The r-process model calculations we have performed in the context of the waiting point classical r-process approximation indicate that the associated level of production of ¹²⁹I is at a level ~ 90 percent its solar rprocess value, relative to the Ba-Pb region.
- This behavior is in conflict with the Wasserburg *et al.* (1996) model that argues that there must be different sources for ¹²⁹I and ¹⁸²Hf.

- On the basis of an analysis of the ²⁴⁴Pu/²³⁸U ratio, in the context of an infall model for galactic chemical evolution, Dauphas (2005) has argued alternatively that ¹²⁹I and ²⁴⁴Pu in the early solar system must be inherited from chemical evolution, while ¹⁰⁷Pd and ¹⁸²Hf are rather injected into the early solar nebula by the explosion of a nearby supernova.
- There thus would appear to remain significant open questions concerning the use of these radioactivities to constrain models of r-process nucleosynthesis.