

Technical Aspects and Specifications of the LUNA Facility

Workshop on Underground Accelerators for Nuclear Astrophysics, Tucson, Arizona, 27./28.10.2003

Laboratory Underground Nuclear Astrophysics

Frank Strieder

Ruhr-Universität Bochum

for the LUNA-Collaboration

Outline

- Background Sources
- LNGS Laboratori Nazionali del Gran Sasso
- LUNA Laboratory Underground for Nuclear Astrophysics
- Alternative Recoil Mass Separator (ERNA)
- Summary and Remarks

γ ray background sources Natural radioactivity At earth surface

0 < **E** < **3.5** MeV Intrinsic and environmental radioactivity

- radionuclides belonging to natural radioactive series (²¹⁴Bi, ²²⁶Ra, ²¹⁴Pb, ²⁰⁸Tl...)
- long-lived natural radionuclides (⁴⁰K, ⁸⁷Rb ..)
- radionuclides of cosmogenic origin (³H, ¹⁴C, ²²Na, ⁷Be..)
- radionuclides of artificial origin (⁹⁵Nd, ¹³⁷Cs, ⁹⁰Sr, ¹⁴⁴Ce..)

3.5 < E < 9 MeV Neutrons shoulder (max at 7 MeV) + cosmic rays

E > 9 MeV Cosmic rays (muons)

Cosmic rays

Primary component: 79% H, 20% He of very high energy

The total energy produced by cosmic rays in our galaxy is equal to 10⁵² GeV/year

Fluxes at the sea level surface (cm⁻² s⁻¹):

Muons	Electrons	Neutrons
1.90 10 ⁻²	4.55 10 ⁻³	6.46 10 ⁻³

- photons: γ environmental flux \rightarrow depending on local geology
- neutrons: partly (cosmic spallation) depth dependent and partly (fission) depth independent → shallow depths are sufficient
- muons: flux almost decreases exponetially with increasing depth

→ relative importance of the background is strongly experiment-dependent

Background reduction in LNGS
(shielding = 4000 m w.e.)RadiationLNGS/surfaceMuons 10^{-6} Neutrons 10^{-3} Photons 10^{-1}

underground halls

LNGS – Laboratori Nazionali del Gran Sasso

- fully equipped lab with surface support structure
- easy horizontal access through highway tunnel (10 km)
- permanent staff = 66 / scientific users ~ 750
- located in Central Italy (100 km east of Rome)

LNGS surface structure

O

100

Hadded and St

And the Local Division of the Local Division

The second

in the

LNGS - underground structure

- •1400 m rock overburden
- •Flat cross-section

L'AQUILA

•Neutron flux = $3.7 \pm 0.3 \ 10^{-2} \ m^{-2} s^{-1}$

•neutron density is of the order of one per hall. E. Bellotti

TERA

CERN

- •Cosmic μ flux attenuation = 10⁻⁶ (0.6 /m² h)
- •Underground area 18 000 m²
- •Support facilities on the surface
- Drive in to the experiments

Massive shielding. Reduces
Cosmic muons by factor 10⁶
Cosmic ray induced neutrons by factor 10³

Environmental activity unaffected by rock. Additional shielding near experiment needed

HP Ge-Detector earth surface detector without any shielding

 $3 \text{ MeV} < E_{\gamma} < 8 \text{ MeV}$ $\Rightarrow 0.5 \text{ counts/s}$

HP Ge-Detector LNGS underground detector with Pb shielding

 $3 \text{ MeV} < E_{\gamma} < 8 \text{ MeV} \\ \Rightarrow 0.0002 \text{ counts/s}$

LUNA Facility

Laboratorio Nazionale del Gran Sasso

LUNA Facility

LUNA Facility

Laboratorio Nazionale del Gran Sasso

400 kV LUNA accelerator

Inline-Crockcroft-Walton power supply inside tank mixture N_2/CO_2 @ 20 bar U_{max} = 50 - 400 kV HV-ripple = 20 Vpp ΔE_{max} = 0.07 keV (meas.) ion beams: protons, alphas I_{max} = 700 μA

Laboratorio Nazionale del Gran Sasso

Laboratory Underground Nacient Astrophysics

C Smoke Sensor

Experiment – additional shielding

Laboratory Underground Nuclear Actorbytics

energy calibration of the accelerator

energy calibration: $E_p = 130 - 400 \text{ keV}$ dc reaction ${}^{12}C(p,\gamma){}^{13}N$ and several resonances

at $E_p = 100 \text{ keV} \Rightarrow$ energy uncertainty $\Delta E_p \approx 100 \text{ eV}$ $\Rightarrow 5 \%$ error in cross section for ${}^{14}N(p,\gamma){}^{15}O$

γ spectrum (HP-Ge) for ¹⁴N(p, γ)¹⁵O

Laboratoria Nazionale del Gran Sasso

γ spectrum (HP-Ge) for ¹⁴N(p, γ)¹⁵O

Alternative – Recoil Mass Separator

- higher energies
- specific reaction types
 - radiation capture reaction (p, γ), (α , γ)
 - heavy ion reaction ${}^{12}C + {}^{12}C$
- radioactive ion beams

ERNA – European Recoil Separator for Nuclear Astrophysics $\rightarrow {}^{12}C(\alpha,\gamma){}^{16}O$

ERNA:

a novel approach to measure the reaction ${}^{12}C(\alpha,\gamma){}^{16}O$

 $E_{cm} = 1.2 \text{ MeV}$

 $\vartheta_{max} = 26 \text{ mrad} \implies \Delta x = \pm 2.6 \text{ cm at } \Delta z = 1 \text{ m}$ $\Delta E \sim \pm 185 \text{ keV} \qquad \text{at } E_0 = 3.6 \text{ MeV}$

 Δ E-E matrix of ¹²C(α , γ)¹⁶O at E_{cm}=3.19MeV (4⁺ Resonance)

Summary and Remarks

sufficient shielding → deep underground (expensive place)
 → costs and outcome balance

- Infrastructure of Underground Laboratory
 - technical staff/operator
 - people willing to stay in ugly places (Ph.D students ?)
- Infrastructure of Surface Laboratory
 - closeby surface accelerator facility is highly required
 - testing of expermental setup, targets, etc.
- Scientific program type of reactions
 → underground shielding needed ?
- alternatives are possible (for example: Recoil Separators)