The Stellar ¹²C+α Fusion Rate: Present Uncertainties and Prospects for their Reduction

Carl Brune

The Final Days of Burning, JINA Workshop at UC Santa Barbara

9-10 March 2006

The Problem:

- cross section is abnormally small (E1 is isospin-forbidden)
- subthreshold resonances

Outline

- Status of present data
- R-Matrix Analysis
- New Experimental Approaches
- Present Status and Prospects

¹²C(α , γ)¹⁶O Cross Section

Data Relevant to ${}^{12}C(\alpha,\gamma){}^{16}O$

- ${}^{12}C(\alpha,\gamma){}^{16}O$ cross section data (required!)
- ${}^{12}C(\alpha, \alpha)$ elastic scattering data
- ¹⁶N β -delayed α spectrum
- Bound-state spectroscopy ($E_x, \Gamma_x, ...$)
- Transfer reactions

This case is ideally suited for R-matrix analysis:

There are relatively few levels to be considered
¹²C and α are spin-0 nuclei

E2 Ground-State Cross Section

Measurements at higher energies would be helpful-TRIUMF (Dragon), Bochum (ERNA)

R-Matrix Method

- Exact implimentaton of quantum-mechanical symmetries and conservation laws (Unitarity)
- Treats long-ranged Coulomb potential explicitly
- Wavefunctions are expanded in terms of unknown basis functions
- Energy eigenvalues and the matrix elements of basis functions are adjustable parameters
- A wide range of physical observables can be fitted (e.g. cross sections, E_x , Γ_x ,...)
- The fit can then be used to determine unmeasured observables
- Major Approximation: TRUNCATION (levels / channels)

Two Extensions

- The external contribution to capture reactions, which depends of the reduced width of the final state, can be included. Very important for E2 captures.
 - essentially "direct capture"
 - F.C. Barker and T. Kajino, Aus. J. Phys. 44, 369 (1991)
 - R.J. Holt et al., Phys. Rev. C 18, 1962 (1978)
- A mathematically-equivalent formulation is also available which eliminates B_c and the level shift.
 - C.R. Brune, Phys. Rev. C 66, 044611 (2002)
 - C. Angulo and P. Descouvemont, Phys. Rev. C 61, 064611 (2000)

β-Delayed Particles $A \rightarrow a+b+e+v$

- Can supply information about reactions between nuclei a and b (the relative energy spectrum is especially useful)
- But how does one do the analysis?
- Barker has proposed:

$$N_{c}(E) = f_{\beta}P_{c} \left| \sum_{\lambda\mu} B_{\lambda}\gamma_{\mu c}A_{\lambda\mu} \right|^{2}$$

• Are the "feeding factors" B_{λ} real?

Return to First Principles (with G.M. Hale)

Start from

$$d\Gamma = (2\pi)^4 \delta^3 (\vec{p}_A - \vec{p}_a - \vec{p}_b - \vec{p}_e - \vec{p}_\nu)$$

$$\times \delta(E_A + m_A - E_a - m_a - E_b - m_b - W_e - W_\nu)$$

$$\times |T|^2 \frac{d^3 \vec{p}_a}{(2\pi\hbar)^3} \frac{d^3 \vec{p}_b}{(2\pi\hbar)^3} \frac{d^3 \vec{p}_e}{(2\pi\hbar)^3} \frac{d^3 \vec{p}_\nu}{(2\pi\hbar)^3}$$

where $T \propto \langle a + b | H_{\text{weak}} | A \rangle$.

An R-matrix expression can be used for the a+b wavefunction!

Summary of Findings

- Barker's formula for the particle energy spectrum is verified (in the "allowed approximation" and ignoring e-v recoil effects).
- The feeding factors B_{λ} are related to matrix elements of the R-matrix eigenfunctions.
- The B_{λ} are real provided that time-reversal invariance holds.
- The framework for calculating higher-order corrections is supplied (e.g. recoil, forbidden transitions).

¹⁶N($\beta\alpha$) Spectrum

What fills in the interference minimum?

How Reliable are R-Matrix Methods?

- Are the channel radii used in phenomenological analyses (5-7 fm) reasonable?
- What about effects of higher-energy levels (truncation)?
- Phase-equivalent potentials with different bound-state properties have recently been studied: J.-M. Sparenberg, Phys. Rev. C 69, 034601 (2004).

It may be possible to address these questions by applying a phenomenological to cross sections etc... generated by a model.

Summary of Recent Determinations

Result @ E=300 keV	source
S _{E1} =79(21) keV-b	¹⁶ N(βα), Buchmann et al. (1994)
$S_{E1} = 99(44) \text{ keV-b}$	direct measurement, Roters et al. (1999)
$S_{E1} = 101(17) \text{ keV-b}$	sub-Coulomb α transfer, Brune et al. (1999)
S _{E2} =120(60) keV-b	compilation, NACRE (1999)
$S_{E2} = 42^{+16}_{-23} \text{ keV-b}$	sub-Coulomb α transfer, Brune et al. (1999)
S _{E2} =85(30) keV-b	direct measurement, Kunz et al. (2001)
$S_{E2} = 53^{+13}_{-18} \text{ keV-b}$	¹² C(α, α), Tischhauser et al. (2002)
S _C =16 keV-b	theoretical, Barker and Kajino (91)
$S_{C}=4(4)$ keV-b	direct measurement, Kunz et al. (2001)

New Total Cross Section Measurement

ERNA/Bochum/Napoli (D. Schürmann et al.), using a Recoil separator and inverse kinematics – all final states

Other Ongoing or Unpublished Work

- Measurement of β-delayed α spectrum of ¹⁶N at Argonne National Lab (X.D. Tang et al.)
- Branching-ratio measurements for bound states at Ohio University (C.M. Matei et al.)
- ${}^{12}C(\alpha,\gamma)$ measurements: Karlsruhe, Stuttgart (?)

Conclusions and Outlook

My take on S(300 keV):

- S(E1-g.s.) = 80(20) keV-b
- S(E2-g.s.) = 45(25) keV-b
- S(Cascade) = 35(20) keV-b
- S(total) = 160 (40) keV-b

Improvements in low-energy capture measurements are difficultThe time is right for a new global analysis