The Stellar ${ }^{12} \mathrm{C}+\alpha$ Fusion Rate: Present Uncertainties and Prospects for their Reduction

Carl Brune

The Problem:

- cross section is abnormally small (E1 is isospin-forbidden)
- subthreshold resonances

Outline

${ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O}$ Cross Section

${ }^{12} \mathrm{C}(\alpha, \gamma)$ - extrapolation to helium burning energies $\mathrm{E}_{0} \approx 300 \mathrm{keV}$

Data Relevant to ${ }^{12} \mathrm{C}(\alpha, \gamma)^{16} \mathrm{O}$

$-{ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O}$ cross section data (required!)

- ${ }^{12} \mathrm{C}(\alpha, \alpha)$ elastic scattering data
- ${ }^{16} \mathrm{~N} \beta$-delayed α spectrum
- Bound-state spectroscopy ($\mathrm{E}_{\mathrm{x}}, \Gamma_{\mathrm{x}}, \ldots$)
- Transfer reactions

This case is ideally suited for R-matrix analysis:

- There are relatively few levels to be considered
- ${ }^{12} \mathrm{C}$ and α are spin-0 nuclei

E2 Ground-State Cross Section

Measurements at higher energies would be helpfulTRIUMF (Dragon), Bochum (ERNA)

R-Matrix Method

- Exact implimentaton of quantum-mechanical symmetries and conservation laws (Unitarity)
- Treats long-ranged Coulomb potential explicitly
- Wavefunctions are expanded in terms of unknown basis functions
- Energy eigenvalues and the matrix elements of basis functions are adjustable parameters
- A wide range of physical observables can be fitted (e.g. cross sections, $\mathrm{E}_{\mathrm{x}}, \Gamma_{\mathrm{x}}, \ldots$)
- The fit can then be used to determine unmeasured observables
- Major Approximation: TRUNCATION (levels / channels)

Two Extensions

- The external contribution to capture reactions, which depends of the reduced width of the final state, can be included. Very important for E2 captures.
- essentially "direct capture"
- F.C. Barker and T. Kajino, Aus. J. Phys. 44, 369 (1991)
- R.J. Holt et al., Phys. Rev. C 18, 1962 (1978)
- A mathematically-equivalent formulation is also available which eliminates B_{c} and the level shift.
- C.R. Brune, Phys. Rev. C 66, 044611 (2002)
- C. Angulo and P. Descouvemont, Phys. Rev. C 61, 064611 (2000)

β-Delayed Particles $\mathrm{A} \rightarrow \mathrm{a}+\mathrm{b}+\mathrm{e}+\mathrm{v}$

- Can supply information about reactions between nuclei a and b (the relative energy spectrum is especially useful)
- But how does one do the analysis?
- Barker has proposed:

$$
N_{c}(E)=f_{\beta} P_{c}\left|\sum_{\lambda \mu} B_{\lambda} \gamma_{\mu c} A_{\lambda \mu}\right|^{2}
$$

- Are the "feeding factors" B_{λ} real?

Return to First Principles (with G.M. Hale)

Start from

$$
\begin{aligned}
d \Gamma= & (2 \pi)^{4} \delta^{3}\left(\vec{p}_{A}-\vec{p}_{a}-\vec{p}_{b}-\vec{p}_{e}-\vec{p}_{\nu}\right) \\
& \times \delta\left(E_{A}+m_{A}-E_{a}-m_{a}-E_{b}-m_{b}-W_{e}-W_{\nu}\right) \\
& \times|T|^{2} \frac{d^{3} \vec{p}_{a}}{(2 \pi \hbar)^{3}} \frac{d^{3} \vec{p}_{b}}{(2 \pi \hbar)^{3}} \frac{d^{3} \vec{p}_{e}}{(2 \pi \hbar)^{3}} \frac{d^{3} \vec{p}_{\nu}}{(2 \pi \hbar)^{3}}
\end{aligned}
$$

where $T \propto\langle a+b| H_{\text {weak }}|A\rangle$.

Summary of Findings

- Barker's formula for the particle energy spectrum is verified (in the "allowed approximation" and ignoring e-v recoil effects).
- The feeding factors B_{λ} are related to matrix elements of the R-matrix eigenfunctions.
- The B_{λ} are real provided that time-reversal invariance holds.
- The framework for calculating higher-order corrections is supplied (e.g. recoil, forbidden transitions).

${ }^{16} N(\beta \alpha)$ Spectrum

Buchmann et al. $1994{ }^{16} \mathrm{~N}(\beta \alpha)$ spectrum and fit

How Reliable are R-Matrix Methods?

- Are the channel radii used in phenomenological analyses (5-7 fm) reasonable?
- What about effects of higher-energy levels (truncation)?
- Phase-equivalent potentials with different bound-state properties have recently been studied: J.-M. Sparenberg, Phys. Rev. C 69, 034601 (2004).

It may be possible to address these questions by applying a phenomenological to cross sections etc... generated by a model.

Summary of Recent Determinations

Result @ $\mathrm{E}=300 \mathrm{keV}$	source
$\mathrm{S}_{\mathrm{E} 1}=79(21) \mathrm{keV}-\mathrm{b}$	${ }^{16} \mathrm{~N}(\beta \alpha)$, Buchmann et al. (1994)
$\mathrm{S}_{\mathrm{E} 1}=99(44) \mathrm{keV}-\mathrm{b}$	direct measurement, Roters et al. (1999)
$\mathrm{S}_{\mathrm{E} 1}=101(17) \mathrm{keV}-\mathrm{b}$	sub-Coulomb α transfer, Brune et al. (1999)
$\mathrm{S}_{\mathrm{E} 2}=120(60) \mathrm{keV}-\mathrm{b}$	compilation, NACRE (1999)
$\mathrm{S}_{\mathrm{E} 2}=42^{+16}-23 \mathrm{keV}-\mathrm{b}$	sub-Coulomb α transfer, Brune et al. (1999)
$\mathrm{S}_{\mathrm{E} 2}=85(30) \mathrm{keV}-\mathrm{b}$	direct measurement, Kunz et al. (2001)
$\mathrm{S}_{\mathrm{E} 2}=53^{+13}-18 \mathrm{keV}-\mathrm{b}$	${ }^{12} \mathrm{C}(\alpha, \alpha)$, Tischhauser et al. (2002)
$\mathrm{S}_{\mathrm{C}}=16 \mathrm{keV}-\mathrm{b}$	theoretical, Barker and Kajino (91)
$\mathrm{S}_{\mathrm{C}}=4(4) \mathrm{keV}-\mathrm{b}$	direct measurement, Kunz et al. (2001)

$$
\mathrm{S}_{\mathrm{tot}} \approx 160 \mathrm{keV}-\mathrm{b}
$$

New Total Cross Section Measurement

ERNA/Bochum/Napoli (D. Schürmann et al.), using a Recoil separator and inverse kinematics - all final states

Other Ongoing or Unpublished Work

- Measurement of β-delayed α spectrum of ${ }^{16} \mathrm{~N}$ at Argonne National Lab (X.D. Tang et al.)
- Branching-ratio measurements for bound states at Ohio University (C.M. Matei et al.)
- ${ }^{12} \mathrm{C}(\alpha, \gamma)$ measurements: Karlsruhe, Stuttgart (?)

Conclusions and Outlook

My take on $\mathrm{S}(300 \mathrm{keV})$:

- S(E1-g.s.) $=80(20) \mathrm{keV}-\mathrm{b}$
- S(E2-g.s.) $=45(25) \mathrm{keV}-\mathrm{b}$
- $\mathrm{S}($ Cascade $)=35(20) \mathrm{keV}-\mathrm{b}$
- $\mathrm{S}($ total $)=160$ (40) keV-b

