The Weak s-process after Core He-burning: the convective Shell C-burning contribution

Marco Pignatari

Universita' di Torino - Italy

(Santa Barbara, March 9, 2006)

People involved:

Gallino R., Baldovin C. Universita' di Torino (Italy) Wiescher M. University of Notre Dame (USA) Herwig F., Heger A., Young P. LANL (USA) Heil M., Käppeler F. FZ Karlsruhe (Germany)

Kippenhahn's Diagram for a star with M=25 M(sun) and solar metallicity (Woosley, Heger & Weaver 2002)

Kippenhahn's Diagram for a star with M= 25 M(sun) and solar metallicity (Limongi, Straniero & Chieffi 2000)

Pre-Supernova composition

 $M = 25 M_{sun} Z = Z_{sun}$ (Alex Heger homepage)

Models: Hydrostatic nucleosynthesis in massive stars

- Post-processing models follow: Convective Core He-burning and <u>Convective Shell C-burning</u> (Raiteri et al. 1991, 1993)
- Updated network

Bao et al. 2000 for (n,γ) ,

 β decay rates from various sources, (n,p) and (n, α) channels....

The weak s-process:ConvectiveConvectiveCore He-burningShell C-burning

Low neutron density (~10⁶ n/cm³) T~3-3.5 10⁸ K Classical s-process

See Lamb et al., Couch et al., Raiteri et al., Prantzos et al. Peak neutron density $(10^{11}-10^{12} \text{ n/cm}^3)$ (?)

 $T \sim 10^9 \text{ K} (?)$

See Arnett & Truran 1969, Raiteri et al. 1991

The final weak s component is an overposition of two different s(s+) components

Neutron source: ${}^{22}Ne(\alpha,n){}^{25}Mg$ Neutron poisons: ${}^{25}Mg$, ${}^{16}O$

$$T_{eff} > 2.5 - 3 * 10^8 \text{ K!!!!}$$

In the following C Shell:

C-burning:

¹²C(¹²C, α)²⁰Ne, α -source ((α ,n) channels are activated!) ¹²C(¹²C,p)²³Na, p-source ¹²C(¹²C,n)²³Mg*, negligible (~1 ‰) ...

¹⁶O is the most abundant isotope (and the most important neutron poison!)

Neutron exposure in the C Shell comparable with the Core He-burning neutron exposure!

In the convective C Shell:

Neutron sources:

¹³C(α ,n)¹⁶O, (Clayton 1968, Arnett & Truran 1969); ¹³C is produced by ¹²C(p, γ)¹³N(β +)¹³C. Temperature dependence for this neutron source.

²²Ne $(\alpha,n)^{25}$ Mg, (....); ²²Ne unburned in the Core He-burning ashes.

¹⁷O(α ,n)²⁰Ne, is it inportant? ¹⁷O strongly produced by ¹⁶O(n, γ)¹⁷O Photodisintegrations to consider during Shell C-burning (up to $T9 \sim 1.2$):

- ${}^{13}N(\gamma,p){}^{12}C*$
- ${}^{17}F(\gamma,p){}^{16}O*$
- ${}^{17}O(\gamma,n){}^{16}O$
- ${}^{21}Na(\gamma,p){}^{20}Ne$
- ${}^{25}Al(\gamma,p){}^{24}Mg*$

For T9 > 1.2 ${}^{29}P(\gamma,p){}^{28}Si, ...$

 $D(x(i)/A(i))/Dt = \rho^*(x(j)/A(j))^*(x(k)/A(k))^*rate(jk)$

 $\mathsf{d}(X_{i}) \; s^{\text{-}1}$

 $\mathsf{d}(X_j) \mathrel{s}^{\text{-}1}$

This is not a classic s-process!

Neutron Density (cm⁻³,

Mass fraction (X_i)

Mass fraction (X_i)

Neutron Density (cm⁻³)

A

C-burning (T9 \sim 1.05) over the Core He-burning ashes...

C-burning (T9 \sim 1.05, 1.10) over the Core He-burning ashes...

Propagation effects of the neutron capture cross sections uncertainties on the weak s component

The case of the ⁶²Ni

Two discrepant estimates of the Maxwellian cross sectionat 30 KeV in the literature, based on the same experiment:35.5 mbBao et al. 198713.5 mbBao et al. 2000

A new measurement provides: 30.5±2.8 mb Nassar et al. 2005

sigma(⁶²Ni)-Nassar05/sigma(⁶²Ni)-Bao00

See also Nassar et al. 2005

Neutron poisons of the weak s-process: effect of cross section uncertainties

- The light isotopes capture the major fraction of the available neutrons, behaving as <u>poisons</u> for the weak s-process.
- The major poison is ¹⁶O
- Other important poisons: ²⁵Mg, ²³Na,
 ¹⁷O(n,α)....

Standard case/sigma(¹⁶O)*1.1

Conclusions

- The weak s component is an overposition of two weak s components with different neutron exposures and different neutron densities: the convective core He-burning and the convective shell C-burning.
- The s-process in the convective C-Shell is important for massive stars, but it is affected from several parameters and nuclear uncertainties.

ratio (end Core He-burning - ¹²C(a,g)¹⁶O ...)/(end Core He-burning - ¹²C(a,g)¹⁶O CF85)

