X-Ray Spectroscopy and Moseley's Law

Material Analysis using X-Ray Fluorescence (XRFA)

ECLIPSE IV X-ray tube AmpTek and Oxford Instr.

A detector is a kind of transducer, a physical entity is coded as an electronic signal

Linear relation between X-ray energy and output pulse amplitude

➢ We are measuring voltages, dynamic range 0 − 8V in ~ 1 microsec; resolution several millivolts

We have to understand the information chain, we need clear and clean conditions

E_{out} "Undershoot" t (b)

Pole Zero Cancellation

all frequencies above 1/T and above 5/T

Pulse shapes, normalized to constant height, for various systems when the time scale of each (i.e. the value of τ) is optimized for the case of a noise corner time τ_c equal to 1. The curves shown are adapted from those given by Konrad²⁰

Equivalent circuit for (CR)²-RC shaping

Taking an x-ray fluorescence spectrum of David

Mapping sulphates on Michelangelo's David using portable EDXRF (from "Exploring David: diagnostic tests and state of conservation," edited by S. Bracci et al., GIUNTI, Florence, 2004) Giovanni Buccolieri, Alfredo Castellano, Marina Donativi, Stefano Quarta Universita di Lecce, Dipartimento di Scienza dei Materiali

Counts

The Restoration of Michelangelo's David

Typical spectrum before and after cleaning treatment

W2: right thigh under gluteus

PIXE investigation of funeral mask of Queen Sat-Djehuti, ~1650 b.C.

Proton beam

E corresponds to number of charge carrier pairs or photons \rightarrow number N Poisson process : fluctuations = \sqrt{N} = standard deviation pulse amplitude $H_o = K \cdot N$ $\sigma = K \cdot \sqrt{N}$ FWHM = 2.35 $K \cdot \sqrt{N}$ $R_{statist} = \frac{FWHM}{H_o} = \frac{2.35 K \cdot \sqrt{N}}{K \cdot N} = \frac{2.35}{\sqrt{N}}$ with correlations and FANO factor : $R_{statist} = \frac{2.35 \cdot \sqrt{F}}{\sqrt{N}}$ (FWHM)²_{total} = (FWHM)²_{statist} + (FWHM)²_{noise} + (FWHM)²_{drift} Resolution $R = \frac{\text{FWHM}}{\text{H}_{\text{o}}}$

FWHM (Gaussian shape) = 2.35σ

For
$$\frac{\Delta E}{E} \le 1 \%$$

 $\succ N \ge 55\,000$
(=235 x 235)

FANO factor = correlation effect Poisson statistics is not valid if ϵ is mostly the same in all charge carrier production processes

 $= \frac{\text{observed variance in N}}{\text{Poisson predicted variance}}$

	energy [MeV]	charge carrier- pairs, resp. photoelectrons	statistical error rms	full width half maximum [%]
	3.0	10 ⁶	400	0.09
semiconductor detector	1.0	3.3×10⁵	230	0.16
<mark>ɛ = 3eV</mark> / e⁻-hole-pair	0.3	10 ⁵	127	0.30
Fano-factor 0.1 – 0.16	0.1	3.3×10 ⁴	73	0.52
	3.0	10 ⁵	183	0.43
gas proportional counter ε = 30eV / ion-pair Fano-factor ~ 0.33	1.0	3.3×10 ⁴	106	0.75
	0.3	10 ⁴	58	1.36
	0.1	3.3×10 ³	33	2.35
	3.0	10 ⁴	100	2.35
scintillation detector	1.0	3.3×10 ³	60	4.08
$\varepsilon = 300 \text{eV} / \text{photo-electron}$	0.3	10 ³	30	7.40
no Fano-factor !	0.1	3.3×10 ²	15	13.0