ACCELERATOR MASS SPECTROMETRY; a powerful atom counting technique

Philippe Collon, University of Notre Dame

What is Accelerator Mass spectrometry (AMS)

The determination of the concentration of a given radionuclide in a sample can be done in 2 ways:

a) measure the radiation emitted during the decay

In many cases where concentrations and/or small or long $t_{1/2}$ this becomes impractical 1mg carbon = 6 x 10⁷ at ¹⁴C = ~1 decay/hour

b) count the number of atoms themselves

In a Mass Spectrometer a sample material is converted to an ion beam that is then magnetically (and electrostatically) analysed

→ MS separates ions by their mass only

Goal of AMS

However in many cases a high background (molecular, isobaric, ...) makes it impossible to separate the ions of interest.

An unambiguous (A, Z) identification would solve this problem

The use of an accelerator in AMS makes it possible to go to much higher energies (several MeV vs. keV) and the measurement of a range of properties that do not depend on ionic charge.

Range Stopping power TOF

 \rightarrow (A, Z)

The high sensitivity of the method makes it possible to measure down to several counts per hour from a beam of the order of microamperes (1.6 μ A = 1 x 10¹³ ions).

Principle of AMS

Typical AMS setup

From carbon dating the Ice Man:

 $^{14}Cage = 5300$ years

To nuclear Astrophysics: The detection of the decay of ⁴⁴Ti by Compton gamma-ray obs. A clear indicator for ongoing ⁴⁴Ti nucleosynthesis

The measurement of the cross-section of the suspected main production channel of ^{44}Ti : $^{40}\text{Ca}(\alpha, \gamma)^{44}\text{Ti}$

Some applications of AMS

AMS can be used in many different fields and adapted to different isotopes.

The following slides will illustrate:

- the application to environmental studies
- AMS technique developed for 2 different isotopes

AMS is however also applied to:

- Nuclear physics
 - ($t_{1/2}$ measurements, cross-section,...)
- Nuclear astrophysics
- Archeology
 - $({}^{14}C, {}^{10}B, \ldots)$

Why is there a need for isotope tracers in sciences?

Natural resources on Earth are limited Human activities are no longer negligible

Therefore a better understanding of environmental systems is necessary

The environment is not a controlled laboratory but an extremely complex dynamical system

Special tools are needed to trace the main environmental transport processes and to determine their dynamics: **ISOTOPES**

Cosmogenic radionuclides as tracers

What potential application of these tracers makes the development of a detection technique so important - I

⁸¹Kr with $t_{1/2} = 229,000$ years, is possibly the only cosmogenic radionuclide that has the potential to become an absolute chronometer for dating polar ice caps and old groundwater.

Properties of ⁸¹Kr

 $t_{1/2} = 230,000$ years ⁸¹Kr/Kr = 5.2 x 10⁻¹³

- Produced in the atmosphere by cosmic ray induced spallation and neutron activation of stable krypton
- The atmosphere is the only major reservoir of ⁸¹Kr on earth
- The contribution from fission products are negligible
 - ⁸¹Kr is shielded by stable ⁸¹Br from b-decay feeding through mass-81 fission products.
 - The direct ⁸¹Kr fission yield has been estimated to be as low as 7x10⁻¹¹

Why use AMS to measure ⁸¹Kr?

The solubility of Kr in ocean water is 9.5x10⁻⁵ cm³ STP/liter →1 I of ocean water contains ~1,200 ⁸¹Kr atoms This results in 1 radioactive decay in 300 years

Low level counting on very large samples is not possible anymore due to the heavy background of the β -decay of anthropogenic ⁸⁵Kr

~ 50 years ago (⁸⁵Kr/Kr: 3x10⁻¹⁸ modern • 1.3x10⁻¹¹)

AMS for ⁸¹Kr, three main difficulties

⁸¹Kr – ⁸¹Br isobar separation in the cyclotron (∆_{cycl} (M/Q)=3 x 10⁻⁴ *vs*. ∆_{lsob} (M/Q)=4 x 10⁻⁶).
Small gas samples to be transferred to the ion source ---→ SKIPI
Overall transmission
(1kg of modern water or ice contains ~1500 atoms of ⁸¹Kr)

MSU EXPERIMENTAL FACILITY

For the purposes of our experiment we used the Superconducting Electron Cyclotron Resonance ion source (SCECR) coupled to the K1200 Cyclotron and the A1200 fragment analyser. Our detection system was mounted at the end of the A1200.

Experimental setup (diagram)

Table of the nuclides

2	Zr 4409°	Zr79	Zr80	Zr81	Zr82	Zr83	Zr84	Zr85	Zr86	Zr87	Zr88	Zr89	Zr90	Zr91	Zr92	Zr93	Zr94
$40^{\frac{18}{10}}$	+4		0+	15.8	0+	(1/2-)	0+	7/2+	0+	(9/2)+	0+	9/2+	0+	5/2+	0+	1.55£+6 y 5/2+	0+
	3.72×10 ⁻⁸ %			ЕСр	EC	ЕСр	EC	EC	EC	EC	EC	EC	51.45	11.22	17.15	β-	17.38
Y 1522° 3345°	¥77	¥78	Y79	Y80	Y81	Y82	Y83	Y84	Y85	Y86	Y87	Y88	Y89	Y90	Y91	Y92	Y93
+3			(5/2+)	(3,4,5)	(5/2+)	1+	(9/2+)	1+	(1/2)-	4-	1/2-	4-	1/2-	2-	1/2-	2-	1/2-
88.90585 1.51×10 ⁻⁸ %			ЕСр	EC	EC	EC	EC *	EC	EC	EC	EC	EC	100	β-		β-	β-
Sr75	Sr76	Sr77	Sr78	Sr79	Sr80	Sr81	Sr82	Sr83	Sr84	Sr85	Sr86	Sr87	Sr88	Sr89	Sr90	Sr91	Sr92
/1 ms	0+	(5/2+,7/2+)	0+	3/2(-)	0+	1/2-	0+	7/2+	0+	9/2+	0+	9/2+	0+	5/2+	0+	5/2+	0+
ЕСр	EC	ЕСр	EC	EC	EC	EC	EC	EC	0.56	EC	9.86	7.00	82.58	β·	β-	β-	β-
Rb74	Rb75	Rb76	Rb77	Rb78	Rb79	Rb80	Rb81	Rb82	Rb83	Rb84	Rb85	Rb86	Rb87	Rb88	Rb89	Rb90	Rb91
(0+)	(3/2-,5/2-)	1(-)	3/2-	0(+)	5/2+	1+	3/2-	1+	5/2-	2-	5/2-	2-	3/2-	2-	3/2-	0	3/2(-)
EC	EC	EC	EC	EC	EC	EC	EC	EC	EC	EC,β-	72.165	ЕС,β-	β- 27.835	β-	β-	β-	β-
Kr73	Kr74	Kr75	Kr76	Kr77	Kr78	Kr79	Kr80	Kr81	Kr82	Kr83	Kr84	Kr85	Kr86	Kr87	Kr88	Kr89	Kr90
5/2-	0+	(5/2)+	0+	5/2+	0+	1/2-	0+	7/2+	0+	9/2+	0+	9/2+	0+	5/2+	0+	(3/2+,5/2+)	0+
ЕСр	EC	EC	EC	EC	0.35	EC	2.25	EC	11.6	11.5	57.0	β	17.3	β-	β-	β·	β-
Br72	Br73	Br74	Br75	Br76	Br77	Br78	Br79	Br80	Br81	Br82	Br83	Br84	Br85	Br86	Br87	Br88	Br89
3+	1/2-	(0-)	3/2-	1-	3/2-	1+	3/2-	1+	3/2-	5-	3/2-	2-	3/2-	(2-)	3/2-	(1,2-)	(3/2-,5/2-)
EC	EC	EC	EC	EC	EC	EC,β·	50.69	ЕС,β-	49.31	β·	β-	β.	β-	β·	β- n	β ·n	β- n
Se71	Se72	Se73	Se74	Se75	Se76	Se77	Se78	Se79	Se80	Se81	Se82	Se83	Se84	Se85	Se86	Se87	Se88
3/2-,5/2-	0+	9/2+	0+	5/2+	0+	1/2-	0+	7/2+	0+	1/2-	0+	9/2+	0+	(5/2+)	0+	(5/2+)	0+
EC	EC	EC	0.89	EC	9.36	7.63	23.78	β-	49.61	β	p-p- 8.73	β	β-	β-	β-	β ·n	β-n
As70	As71	As72	As73	As74	As75	As76	As77 38.83 h	As78	As79	As80	As81	As82	As83	As84	As85	As86	As87
4(+)	5/2-	2-	3/2-	2-	3/2-	2-	3/2-	2-	3/2-	1+	3/2-	(1+) *	(5/2-,3/2-)	*	(3/2-)	0.745 8	(3/2-)
EC	EC	EC	EC	EC,β	100	β-	β-	β-	β-	β-	β-	β-	β-	β ·n	β- n	β ·n	β-n
Ge69 39.05 h	Ge70	Ge71	Ge72	Ge73	Ge74	Ge75 82.78 m	Ge76	Ge77	Ge78 88.0 m	Ge79 18.98 s	Ge80 29.5 s	Ge81	Ge82 4.60 s	Ge83	Ge84 966 ms	Ge85 535 ms	Ge86
5/2-	0+	1/2-	0+	9/2+ *	0+	1/2- *	0+	7/2+	0+	(1/2)- *	0+	(9/2+) *	0+	(5/2+)	0+		0+
EC	21.23	EC	27.66	7.73	35.94	β-	7.44	β-	β-	β-	β-	β-	β-	β-	β- n	β ·n	
Ga68 67.629 m	Ga69	Ga70	Ga71	Ga72	Ga73	Ga74	Ga75	Ga76	Ga77	Ga78	Ga79	Ga80	Ga81	Ga82	Ga83	Ga84	- A
1+	3/2-	1+	3/2-	3-	3/2-	(3-)	3/2-	(2+,3+)	(3/2-)	(3+)	(3/2-)	(3)	(5/2-)	(1,2,3)		0.0 11.9	54
EC	60.108	EC,β·	39.892	β-	β-	β-	β-	β-	β-	β.	β- n	β·n	βn	β ·n	β- n	β ·n	~ .
Zn67	Zn68	Zn69 56.4 m	Zn70 5E+14 v	Zn71 2.45 m	Zn72 46.5 h	Zn73	Zn74	Zn75	Zn76	Zn77 2.08 s	Zn78	Zn79 995 ms	Zn80 0.545 s	Zn81	Zn82		
5/2-	0+	1/2-	0+	1/2-	0+	(1/2)-	0+	(7/2+)	0+	(7/2+) *	0+	(9/2+)	0+		0+		
4.1	18.8	β-	0.6	β-	β-	β-	β-		β-	β.	β-	β'n	β'n	β [•] n			

Main problem: reduce the ⁸¹Br intensity

In order to reduce this factor, a substantial reduction in the Br Background intensity in the beam must be made

Dating water from the Great Artesian Basin of Australia

The GAB sampling trip

Oh the hard life of the scientist

Groundwater sample (Watson Creek)

Natural Krypton sample

Experimental results

	Age (years)	Uncertainty	
Atmosphere	0		
Raspberry Creek	225,000	±42,000	±(12.7% * τ)
Oodnadatta	354,000	±50,500	±(15.3% * τ)
Duck Hole	287,000	±44,200	±(13.4% * τ)
Watson Creek	402,000	±51,000	±(15.4% * τ)

What potential application of these tracers makes the development of a detection technique so important - II

³⁹Ar with $t_{1/2}$ = 269 years, it is particularly well suited to study the "Great Atlantic conveyor belt" with its cycle of 1000 years

Atlantic conveyor belt circulation

Concept of the Conveyor belt

The application of ³⁹Ar dating to groundwater is limited by the fact that underground production in granitic rock ${}^{39}K(n,p){}^{39}Ar$ can be substantial.

Properties of ³⁹Ar

 $t_{1/2} = 269$ years ${}^{39}Ar/Ar = 8.1 \times 10^{-16}$

- Mainly produced through cosmic ray induced spallation on argon in the atmosphere ⁴⁰Ar(n, 2n)³⁹Ar Q= -9.87 MeV
- Anthropogenic production is estimated to be below 5% [Loosli 1983]
- Subsurface production can be significant in rocks with high uranium content ³⁹K(n,p)³⁹Ar

Activity of 1 I water

 1 locean sea water contains ~ 6500 ³⁹Ar atoms (In ocean water: Ar solubility = 0.4 cm³ STP/I)
Activity_(t=0) =5.3x10⁻⁷ Bq or ~17 decays

per year.

This tends to make statistics rather poor

How can ³⁹Ar be counted?

Low Level Counting

Possible on large samples (~1000 l), done by H.H. Loosli in Bern

Laser

The extremely low concentration makes this a very difficult isotope for laser techniques
AMS (with small vol. samples)
several difficulties (△M/M, low concentration, ...)

5 Main difficulties ■ The ³⁹Ar/Ar = 8.1x10⁻¹⁶ ratio Isobar separation between ³⁹K and ³⁹Ar $(\Delta M/M = 1.55 \times 10^{-5})$ A tandem (as used in traditional AMS lab) cannot be used for noble gasses Source efficiency Overall transmission

Principle of the gas filled magnet

In the gas filled magnetic region, the discreet charge states coalesce around a trajectory defined by the mean charge state of the ion in the gas

$B\rho \propto mv \ / \ \bar{q}$

Gas filled magnet setup

Split-Pole Enge Spectrograph

Experimental setup I

Initial beam tuning

- As it is not possible to tune on ³⁹Ar⁸⁺ it was decided to use as pilot beam : ⁷⁸Kr¹⁶⁺ from the ECR source
- Beam energy

⁷⁸Kr¹⁶⁺ Energy: 464 MeV resulting in a ³⁹Ar⁸⁺ beam with 232 MeV

Total transmission ~20% (without stripping)

Later detector set-up

Beam: $P\pi = 113.6 \text{ MeV}$ Booster = 348.8 MeV ATLAS = 464 MeV

Detect: N2 = 12.1 Torr PPAC = 3 torr (Isob) IC = 21 torr (Isob) Cath: - 430 V Anode: + 575 V Grid: + 300 Div: +240V / -365V

Using a quartz liner in the plasma chamber

How to sample ocean water?

Nathaniel B.Palmer cruise 0106

Water sampling rosette

Ocean water samples

205

B=11.6 KG THETA=5DEG AP=1 100 UG AU 14:28 9-Jul-02 Run 107

B=11.6 KG THETA=5DEG AP=1 100 UG AU 14:18 20-Jun-02 Run 125

Results from May 2002 AMS run

Sample	CPS/eµA	³⁹ Ar/Ar		"age"
n-act	2.69x10 ⁻³	5.80x10 ⁻¹⁴		
natAr	3.57x10 ⁻⁵	7.70x10 ⁻¹⁶		
SAVE 294/5000	1.67x10 ⁻⁵	3.59x10 ⁻¹⁶		44% mod.
SAVE 294/850	2.43x10 ⁻⁵	5.23x10 ⁻¹⁶	- And the second	65% mod.
Watson creek	2.02x10 ⁻⁶	4.35x10 ⁻¹⁷		5.4%
SAVE 95/4717	1.21x10 ⁻⁵	2.61x10 ⁻¹⁶		32% mod.
natAr	3.96x10 ⁻⁵	8.53x10 ⁻¹⁶		
n-act	2.79x10 ⁻³	6.01x10 ⁻¹⁴		

$3.76 \text{ x} 10^{-5} \equiv 8.1 \text{ x} 10^{-16}$