

JINA Science – MRC 2 X-ray binaries – accreting neutron stars

D.A. Smith, M. Muno, A.M. Levine, R. Remillard, H. Bradt 2002

Why are accreting neutron stars interesting ?

- bright
- oscillation phenomena probe spin, modes ?
- spin up
- heated (in transients heating and cooling alternates)
- nuclear processes probe various layers (bursts)
- \rightarrow Great Neutron star / compact matter laboratories

Era of Discoveries

Off state transient KS 1731-260 (Wijands 2001)

Burst oscillations

Nuclear physics – all addressed by JINA

Nuclear physics matters

Need much more precise nuclear data to make full use of high quality observational data

The Joint Institute for Nuclear Astrophysics

³²CI(p,g)³³Ar rate at MSU/NSCL (Clement et al. 2004)

1D X-ray burst calculations on impact of previous ³²Cl(p,g)³³Ar uncertainty by J. Fisker et al.

The Joint Institute for Nuclear Astrophysics

Measurement of ⁶⁸Se mass at ANL (Woehr et al. 2004)

Sedimentation and X-ray Bursts

In a plasma, H "floats" upward and heavier ions (He, C, ...) settle.

Peng, Brown & Truran, in preparation

- Affects H/He ratio at ignition
- Important for determining rp-process "ashes"

JINA Workshop in Santa Barbara April 23-24, 2004

Workshop goals:

- bring together JINA collaboration on MRC2
- generate new ideas
- trigger new collaborations
- determine direction of research program

Few examples for new initiatives and collaborations:

- → MSU/Chicago calculation of diffusion in X-ray bursts new collaboration with LANL/ND to implement diffusion in full 1D models
- \rightarrow 1D modelers will compare codes and results
- \rightarrow Need detailed model of burning front propagation, impacts nuclear physics
- \rightarrow Sensitivity studies to take advantage of experimental opportunities

Participants: MSU: E. F. Brown, S. Gupta, M. Ouellette, H. Schatz ND : D. Balsara, J. Fisker, M. Wiescher UCSB: P. Arras, L. Bildsten, P. Chang, T. Piro UCSC: J. Macbeth LANL: A. Heger GSFC: T. Strohmayer MIT: D. Chakrabarty