

The fate of matter on accreting neutron stars

H. Schatz, MSU, NSCL & Joint Institute for Nuclear Astrophysics

D.A. Smith, M. Muno, A.M. Levine, R. Remillard, H. Bradt 2002 (RXTE All Sky Monitor)

Lines during bursts \rightarrow M,R

Off-state Lum. -> cool KS 1731-260 331 Frequency (Hz) 330 350 NASA/Chandra/Wijnands et al. Superbursts -> coo 328 time (MJD-50300) 0.8 Major driver are new 327 counts cm⁻²s⁻¹ 0.2 0.4 ດໍເັັ (4U 1735-44) observations -"renaissance of X-ray astronomy" 0 18.5 18 time (days)

ms burst oscillations \rightarrow M,R

JINA multi-institutional, multidisciplinary effort on X-ray binaries

Step 1: Thermonuclear burning in atmosphere

X-ray burst observations

Need much more precise nuclear data to make full use of high quality observational data

Importance of reaction rates - ${}^{15}O(\alpha,\gamma)$

X-ray bursting behavior for different ¹⁵O(α , γ) reaction rate

JINA 1-zone X-ray burst model by Fisker et al. 2004

 $\Gamma\alpha$ (4.033 MeV state): 345neV – 130 μ eV

¹⁵O(α,γ) $\Gamma \alpha / \Gamma$ measurements using LESA and TWINSOL @ Notre

• Dominant 4.03-MeV level

Z

- **JINA ND:** $\Gamma = 51 \pm {}^{43}_{21} \text{ meV}$
- Γ α / Γ <4.3x10⁻⁴ by Davids et al, PRC2003
- Large statistics ensure the sensitivity of $\Gamma_{\alpha}/\Gamma \sim 10^{-4}$
- ~1,000,000 events recorded for the 4.03-MeV state
- Preliminary result:
 Γ_α / Γ = (2.9 + 2.1) x 10⁻⁴

14000

14500

15000

15500

16000

16500

NSCL Experiments: New ³²Cl(p,g)³³Ar rate

Doppler corrected γ -rays in coincidence with 33Ar in S800 focal plane:

JINA Grad Student project: X-ray burst sensitivity to reaction rates

Summer research project of graduate student Matt Amthor at LANL (A. Heger) prior to his NSCL thesis experiment to determine rp-process reaction rates

M. Amthor, A. Heger, H. Schatz, B. Sherrill

Theoretical burst projects- connecting nuclear physics and astrophysics

Abundance signatures – non solar O/Ne ratios towards some XRBs

• Ejection of burst ashes into space (UCSB,MSU) Weinberg et al. Ap.J. 639 (2006) 1018

Discovery of a spectral line – what does it tell us about the NS?

• Spectral line formation and lineshape for EXO 0748-676 and beyond (UCSB) Chang et al. ApJ 636 (2006) 117, Chang et al. ApJ 629 (2005) 998

Origin of burst oscillations

• Burst oscillations due to surface modes (UCSB) Piro & Bildsten ApJ 619 (2005)1063, Apj 629(2005)438, ApJ638(2006)968

Burst behavior as a function of parameters (accretion rate, ...)

- Sedimentation (MSU, Chicago) Brown, Peng@Truran ApJ, submitted
- → JINA grad. Student Peng visited LANL summer 2006 to implement sedimentation in Kepler code
- 1D Burst modeling: Sensitivity and systematic behavior (ND,MSU,LANL)

Multi-D simulation of accretion flows

• Initially for white dwarfs (ND) Fisker&Balsara ApJ635(2005)69

Step 2: Deep ocean burning: Superbursts

Crust burning

Preliminary results: crust processes (calculation by JINA postdoc S. Gupta)

How does this process continue at greater depth ?

 \rightarrow Pycnonuclear fusion ? (rates calculated by ND group)

Connection to astrophysics: JINA neutron star crust project

→ Masses and excitation energies determine heat release possibly within reach at NSCL → experimental program

Pycnonuclear fusion reaction rates

M. Beard, L. Gasques, M. Wiescher, D. Yakovlev (Notre Dame/St. Petersburg)

The rates involving isotopes with identical charge number show only minor differences which are entirely due to the difference in S-factor;

For higher Z-values the rates decrease steeply at density values less than 10^{12} g/cm³ because of the strong Z-dependence in the pycno equation.

MRC3 focused workshops

Nuclear physics and astrophysics of accreting neutron stars, April 23-24, 2004, Santa Babara, CA

"Overall, I found this one of the most stimulating workshops I have been to. In that sense, the ACP workshop that we are now planning is a spin-off from that ITP workshop." comment by Alex Heger

Symposium on Nuclear EOS used in astrophysical models Philadelphia, August 25-26, 2004

Workshop on Classical Novae and Type I a Supernovae May 20-22, 2005, Santa Babara, CA

Workshop on Nuclear Incompressibility University of Notre Dame July 14-15, 2005

In Heaven and on Earth 2006 – the Nuclear EOS in Astrophysics Montreal, July 5-7, 2006

Planned: Aspen workshop on the physics of accreting neutron stars

Summary

- Recent observations have revealed many new phenomena
 - \rightarrow unique opportunities to understand these systems
 - \rightarrow and learn about neutron stars in unique environment
- Wide range of nuclear physics needed to understand accreting neutron stars
 - exotic nuclei from p-drip to n-drip
 - EOS
- Concerted effort of wide range of JINA institutions and groups
 → towards a complete model of neutron star crust processes
- Major progress in theory and experiment already
- Immediate JINA Goals:
 - \rightarrow identify underlying nuclear physics (new processes possible)
 - \rightarrow predict new observables for range of system parameters
 - \rightarrow explore sensitivity of observables to nuclear physics
 - \rightarrow understand and interpret observations