r (apid neutron capture) process

Produces ~half of elements > Fe (for example most of Au, Pt, U, ...) Open questions:

- What is the site of the r-process ?
 (Supernovae ? Neutron star mergers ? γ-ray bursts ? ...)
- Is there more than one r-process ?
- Can the r-process tell us about physics at extreme astrophysical conditions ?

Nucleosynthesis in the r-process

Need nuclear physics

→ To extract astrophysical information from observed final abundances (guide search for site, constrain physics of site ?)

→ To disentangle different r-processes (what does each process make ?)

r-process experiments at the NSCL

NSCL has unique capabilities in reaching the r-process below N=82

- \rightarrow This is where more than one r-process could contribute
- → Testbed for shell effects (probably fast freezeout sensitivity !)
- \rightarrow Site specific signatures: α -rich freezeout contribution, v-effects, ...)
- \rightarrow GOAL: reliable modeling of pattern for various r-processes for A<130

The Joint Institute for Nuclear Astrophysics

First experiment: r-process in the Ni region (Hosmer et al.)

Measure:

- β-decay half-lives
- Branchings for β -delayed n-emission

New NSCL/JINA Neutron detector NERO counters: Mainz, PNNL, calibration: ND

Detect:

- Particle type (TOF, dE, p)
- Implantation time and location
- β -emission time and location
- Neutron-β coincidences

Half-life of ⁷⁸Ni

Particle identification in rare isotope beam from NSCL at Michigan State University

Model calculation for synthesis of heavy elements during the r-process in supernova explosions JINA student exchange with VISTARS/ r-process school

Measured half-life of ⁷⁸Ni with 11 events This is the most neutron rich of the 10 possible classical doubly-magic nuclei in nature.

Result: 110 ⁺¹⁰⁰-60 ms

P. Hosmer et al. PRL 94 (2005) 112501

models produce excess of heavy elements with new shorter 78Ni half-life

 \rightarrow need to readjust conditions in model

Thesis: P. Hosmer

The Joint Institute for Nuclear Astrophysics

Results (Hosmer et al.)

DF+CQRPA Borzov et al. 2005,

QRPA: Moller et al. 2003,

Shell model: Lisetzky & Brown 2005

The Joint Institute for Nuclear Astrophysics

TOF Mass measurements (Matos, Estrade)

First experiment Feb 2006 Preliminary data

$$\frac{m_0}{q}\gamma = B\rho \frac{t}{l}.$$

Summary

- Experiments at NSCL (and GSI) are an important part of the JINA r-process program
- JINA:
 - driver in forming multi-institutional collaboration and student exchange
 - equipment collaboration
 - student training in modeling and astro theory
 - \rightarrow rapid interpretation and implementation of data in r-process codes
- part of a larger JINA framework of modeling of various r-processes and s-process, observations, stable beam s-process experiments, nuclear theory efforts
- Goal: understand origin of heavy elements A=80-130 → disentangle various processes and test models with experimental nuclear data (error bars !)
 → fully interpret observations
- also relevant for neutron star crust modeling (nuclear physics needs emerging)