The Joint Institute for Nuclear Astrophysics

An Introduction to Ion-Optics

Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005

Georg P. Berg

The Lecture Series

1st Lecture: 9/30/05, 2:00 pm: Definitions, Formalism, Examples

2nd Lecture: 10/7/05, 2:00 pm: Ion-optical elements, properties & design

3rd Lecture: 10/14/05, 2:00 pm: Real World Ion-optical Systems

4th Lecture: 12/2/05, 2:00 pm: Separator Systems

5th Lecture: 12/9/05, 2:00 pm: Demonstration of Codes (TRANSPORT, COSY, MagNet)

1st Lecture

1st Lecture: 9/30/05, 2:00 – 3:30 pm: Definitions, Formalism, Examples

- Motivation, references, remarks (4 8)
- The driving forces (9)
- Definitions & first order formalism (10 16)
- Phase space ellipse, emittance, examples (17 25)
- Taylor expansion, higher orders (26 27)
- The power of diagnostics (28 30)
- Outlook 2nd Lecture: sample magnetic elements (31-34)
- Q & A

Motivation

- Manipulate charged particles ($\beta^{+/-}$, ions, like p,d, α , ...)
- Beam lines systems
- Magnetic & electric analysis/ separation (e.g. St. George)
- Acceleration of ions

Who needs ion-optics anyway?

- Over 6*10⁹ people have I hope so happy lives without!
- A group of accelerator physicists are using it to build machines that enables physicists to explore the unkown!
- Many physicists using accelerators, beam lines and magnet system (or their data) needs some knowledge of ion-optics.
- This lecture series is an **introduction** to the last group and I will do my best to let you in on the basics first and than we will discuss some of the applications of ion-optics and related topics.

Introductory remarks

- Introduction for physicists → Focus on ion-optical definitions, and tools that are useful for physicist at the NSL & future users of St. George recoil separator.
- Light optics can hardly be discussed without lenses & optical instruments
 → ion-optics requires knowledge of ion-optical elements.
- Analogy between Light Optics and Ion-Optics is useful but limited.
- **Ion-optical & magnet design** tools needed to understand electro-magnet systems. Ion-optics is not even 100 years old and (still) less intuitive than optics developed since several hundred years

	RECENS HABITAE. 7 fpicillis ferantur fecundum lineas refractas E C H. E D I. coarctantur enim , & qui prius liberi ad F G. Obiectum dirigebantur, partem tantummodo H I. co.	· · · · · · · · · · · · · · · · · · ·	
2:3			FHIG
	przhendent: accepta deinde ratione distantiz EH.ad lineam H 1. per tabulam sinuum reperietur quantitas anguli in oculo ex obiecto H 1. constituti, quem mi- nuta quardam tantum continere comperiem us. Quod si Specilto C D. bracteas, aliàs maioribus, aliàs verò mi		€

Galileo

Telescope 1609 \rightarrow

60

← Optics in Siderus Nuncius 1610

Basic tools of the trade

- Geometry, drawing tools, CAD drafting program (e.g. AutoCad)
- Linear Algebra (Matrix calculations), first order ion-optics (e.g. TRANSPORT)
- Higher order ion-optics code to solve equation of motion, (e.g. COSY Infinity, GIOS, RAYTRACE (historic)
- Electro-magnetic field program (solution of Maxwell's Equations), (e.g. finite element (FE) codes, 2d & 3d: POISSON, TOSCA, MagNet)
- Properties of incoming charged particles and design function of electro-magnetic facility, beam, reaction products (e.g. kinematic codes, charge distributions of heavy ions, energy losses in targets)
- Many other specialized programs, e.g for accelerator design (e.g. synchrotrons, cyclotrons) not covered in this lecure series.

Literature

- Optics of Charged Particles, Hermann Wollnik, Academic Press, Orlando, 1987
- The Optics of Charged Particle Beams, David.C Carey, Harwood Academic Publishers, New York 1987
- Accelerator Physics, S.Y. Lee, World Scientific Publishing, Singapore, 1999
- TRANSPORT, A Computer Program for Designing Charged Particle Beam Transport Systems, K.L. Brown, D.C. Carey, Ch. Iselin, F. Rotacker, Report CERN 80-04, Geneva, 1980
- Computer-Aided Design in Magnetics, D.A. Lowther, P. Silvester, Springer 1985

Ions in static or quasi-static electro-magnetic fields

Definition of BEAM for mathematical formulation of ion-optics

What is a beam, what shapes it, how do we know its properties ?

- Beam parameters, the long list
- Beam rays and distributions
- Beam line elements, paraxial lin. approx. higher orders in spectrometers
- System of diagnostic instruments

Not to forget: Atomic charge Q Number of particles n Code TRANSPORT: (x, Θ , y, Φ , 1, dp/p) (1, 2, 3, 4, 5, 6) Convenient "easy to use" program for beam lines with paraxial beams

Not defined in the figure are:

dp/p = rel. momentum l = beam pulse length

All parameters are relative to "central ray"

Code: COSY Infinity: (x, p_x/p₀, y, p_y/p₀, l, dK/K, dm/m, dq)

Needed for complex ion-optical systems including several charge states different masses velocities (e.g. Wien Filter) higher order corrections

Defining a RAY

Not defined in the figure are:

dK/K = rel. energydm/m = rel. energydq = rel. charge of ion

All parameters are relative to "central ray"

Note: Notations in the Literature is not consistent! Sorry, neither will I be.

FIG. 1 -- CURVILINEAR COORDINATE SYSTEM USED IN DERIVATION OF EQUATIONS OF MOTION.

Transport of a ray

6x6 Matrix representing optic element (first order)

 \checkmark

Note: We are not building "random" optical elements. Many matrix elements = 0 because of symmetries, e.g. mid-plane symmetry

DRIFT space matrix E= 6=0

The first-order R matrix for a drift space is as follows:

	< 1	L	0	0	0	0	
	0	1	0	0	0	0	
	0	0	1	L	0	0	
	0	0	0	1	0	0	-5
	0	0	0	0	1	0	
1	6	0	0	0	0	1/	1

where

L = the length of the drift space.

First-order qu	adrupole mat	rix dB dr	to dB =0			
cos k _q L	$\frac{1}{k_q} \sin k_q^L$	0	0	0	0	
-k _q sin k _q L	cos k _q L	0	0	0	0	
0	o	cosh k _q L	$\frac{1}{k_q}$ sinh k_qL	0	0	
	0	$k_q \sinh k_q L$	cosh k _q L	0	0	
0	o	0	0	1	0	
0	0	0	. 0	0	1	

These elements are for a quadrupole which focuses in the horizontal (x) plane (B positive). A vertically (y-plane) focusing quadrupole (B negative) has the first two diagonal submatrices interchanged.

Definitions: L = the effective length of the quadrupole

a - the radius of the aperture

Bo = the field at radius a

k²_q = (B₀/a)(1/Bρ₀), where (Bρ₀) = the magnetic rigidity (momentum) of the central trajectory.

TRANSPORT matrices of a Drift and a Quadrupole

For reference of TRANSPORT code and formalism:

K.L. Brown, F. Rothacker, D.C. Carey, and Ch. Iselin, TRANSPORT: A computer program for designing charged particle beam transport systems, SLAC-91, Rev. 2, UC-28 (I/A), also: CERN 80-04 Super Proton Synchrotron Division, 18 March 1980, Geneva, Manual plus Appendices available on Webpage: ftp://ftp.psi.ch/psi/transport.beam/CERN-80-04/

David. C. Carey, The optics of Charged Particle Beams, 1987, Hardwood Academic Publ. GmbH, Chur Switzerland

Transport of a ray though a system of beam line elements

(4)

Complete system is represented by one Matrix $R_{system} = R_n R_{n-1} \dots R_0$

Geometrical interpretation of some TRANSPORT matrix elements

> Achromatic system: $R_{16} = R_{26} = 0$

Focusing Function

(x|a)Wollnik $= dx/d\Theta$ physical meaning $= (x|\Theta)$ RAYTRACE $= R_{12}$ TRANSPORT

Fig. 1.10. (a) Schematic representation of an optical system with vanishing (x|a). Such a system is also referred to as point-to-point focusing. (b) Schematic representation of an optical system with (a|x) = 0. Such a system is also referred to as parallel-to-parallel focusing (it is also called a telescope). (c) Schematic representation of an optical system with (x|x) = 0. Such a system is also referred to as parallel-to-point focusing. (d) Schematic representation of an optical system with (a|a) = 0. Such a system is also referred to as parallel-to-point focusing. (d) Schematic representation of an optical system with (a|a) = 0. Such a system is also referred to as point-to-parallel focusing.

Short Break?

- (² (5)

Equivalence of Transport of

ONE Ray ⇔ Ellipse

Defining the σ Matrix representing a Beam

The 2-dimensional case (x, Θ)

 $\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{21} \\ \sigma_{21} & \sigma_{22} \end{pmatrix}$ Real, pos. definite symmetric σ Matrix $\sigma^{-1} = 1/\epsilon^2 \begin{pmatrix} \sigma_{22} & -\sigma_{21} \\ -\sigma_{21} & \sigma_{11} \end{pmatrix}$ Inverse Matrix Exercise 1:

Show that: $\sigma\sigma^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ (Unity Matrix)

Ellipse Area = $\pi(\det \sigma)^{1/2}$

Emittance ε = det σ is constant for fixed energy & conservative forces (Liouville's Theorem)

Note: ε shrinks (increases) with acceleration (deceleration); Dissipative forces: ε increases in gases; electron, stochastic, laser cooling

2-dim. Coord.vectors (point in phase space)

 $\mathbf{X} = \begin{pmatrix} \mathbf{x} \\ \Theta \end{bmatrix} \qquad \mathbf{X}^{\mathrm{T}} = (\mathbf{x} \; \Theta)$

Ellipse in Matrix notation: $X^{T} \sigma^{-1} X = 1$ (6)

Exercise 2: Show that Matrix notation is equivalent to known Ellipse equation: $\sigma_{22} \ x^2 - 2\sigma_{21} \ x \ \Theta + \sigma_{11} \Theta^2 = \epsilon^2$

Courant-Snyder Notation

In their famous "Theory of the Alternating Synchrotron" Courant and Snyder used a Different notation of the σ Matrix Elements, that are used in the Accelerator Literature.

For you r future venture into accelerator physics here is the relationship between the σ matrix and the betatron amplitue functions α , β , γ or Courant Snyder parameters

$$\sigma = \begin{pmatrix} \sigma_{11} \sigma_{21} \\ \sigma_{21} \sigma_{22} \end{bmatrix} = \epsilon \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{bmatrix}$$

Transport of 6-dim σ Matrix

Consider the 6-dim. ray vector in TRANSPORT: $X = (x, \Theta, y, \Phi, l, dp/p)$ $X_1 = RX_0 \quad (7)$ Ray X_0 from location 0 is transported by a 6 x 6 Matrix R to location 1 by: Note: R maybe a matrix representing a complex system (3) is : $R = R_n R_{n-1} \dots R_0$ $X_0^T \sigma_0^{-1} X_0 = 1$ (6) Ellipsoid in Matrix notation (6), generized to e.g. 6-dim. using σ Matrix: Inserting Unity Matrix $I = RR^{-1}$ in equ. (6) it follows $X_0^{T}(R^{T}R^{T-1}) \sigma_0^{-1}(R^{-1}R) X_0 = 1$ (8) $(\mathbf{R}\mathbf{X}_0)^{\mathrm{T}} (\mathbf{R}\mathbf{\sigma}_0 \mathbf{R}^{\mathrm{T}})^{-1} (\mathbf{R}\mathbf{X}_0) = 1$ from which we derive (9)The equation of the new ellipsoid after transformation becomes $X_1^T \sigma_1^{-1} X_1 = 1$ (10) $\sigma_1 = R\sigma_0 R^T$ where

Conclusion: Knowing the TRANSPORT matrix R that transports one ray through an ion-optical system using (7) we can now also transport the phase space ellipse describing the initial beam using (10)

The transport of rays and phase ellipses in a Drift and focusing Quadrupole, Lens

Increase of Emittance ε due to degrader

for back of the envelop discussions!

A degrader / target increases the emittance ϵ due to multiple scattering.

The emittance growth is minimal when the degrader in positioned in a focus As can be seen from the schematic drawing of the horizontal x-Theta Phase space.

Emittance ε measurement by tuning a quadrupole

The emittance ε is an important parameter of a beam. It can be measured as shown below.

$$x_{max} = \sigma_{11} (1 + \sigma_{12} L / \sigma_{11} - L g) + (\epsilon L)^2 / \sigma_{22}$$

- $g = \frac{\partial Bz/\partial x * l}{B\rho} \qquad (Quadr. field strength) \\ l = eff. field length)$
- L = Distance between quadrupole and beam profile monitor

Take minimum 3 measurements of $x_{max}(g)$ and determine Emittance ε

Exercise 3:

In the accelerator reference book σ_{22} is printed as σ_{11}

Verify which is correct

L = Distances between viewers (beam profile monitors)

Emittance ε measurement by moving viewer method

The emittance ε can also be measured in a drift space as shown below.

$$(\mathbf{X}_{\max}(V2))^2 = \sigma_{11} + 2 L_1 \sigma_{12} + L_1^2 \sigma_{22}$$

 $(x_{max}(V3))^2 = \sigma_{11} + 2 (L_1 + L_2)\sigma_{12} + (L_1 + L_2)^2 \sigma_{22}$

where $\sigma_{11} = (x_{max}(V1))^2$

Emittance: $\varepsilon = \sqrt{\sigma_{11}\sigma_{22}} - (\sigma_{12})^2$

Discuss practical aspects No ellipse no ε? Phase space! Taylor expansion in $x_1, \theta_1, y_1, \phi_1$, and δ

$$\begin{array}{rcl} & & & & & & & \\ x_2 &= (x/x)x_1 + (x/\theta)\theta_1 + (x/\delta)\delta + (x/x^2)x_1^2 \\ &+ (x/x\theta)x_1\theta_1 + (x/\theta^2)\theta_1^2 + (x/x\delta)x_1\delta \\ &+ (x/\theta\delta)\theta_1\delta + (x/\delta^2)\delta^2 + (x/y^2)y_1^2 + (x/y\phi)y_1\phi_1 \\ &+ (x/\phi^2)\phi_1^2 + & & & \\ &+ (x/\phi^2)\phi_1^2 + & & & \\ &+ (x/\phi^2)\phi_1$$

Taylor expansion

Note: Several notations are in use for 6 dim. ray vector & matrix elements.

$$R_{nm} = (n|m)$$

TRANSPORT RAYTRACE
Notation

Linear (1st order)TRANSPORT Matrix R_{nm}

Remarks:

- Midplane symmetry of magnets reason for many matrix element = 0
- Linear approx. for "well" designed magnets and paraxial beams
- TRANSPORT code calculates 2nd order by including Tmno elements explicitly
- TRANSPORT formalism is not suitable to calculate higher order (>2).

x(t)		(R_11)	R12	0	0	0	R16	x	
$\theta(t)$		R ₂₁	R ₂₂	0	0	0	R26	θο	Angular]
y(t)	=	0	0	R ₃₃	R ₃₄	0	0	yo	
$\varphi(t)$		• 0	0	R43	R ₄₄	0	0	φ_{o}	
(t)		R ₅₁	R ₅₂	0	0	1-	R ₅₆	l_o	
ð(t)		0	0	0	0	0	1	8	

$$d(m\dot{x})/dt = Q(E_x + v_y B_z - v_z B_y)$$

$$d(m\dot{y})/dt = Q(E_y + v_z B_x - v_x B_z)$$

$$d(m\dot{z})/dt = Q(E_z + v_x B_y - v_y B_z)$$

Methods of solving the equation of motion:

1) Determine the TRANSPORT matrix, possibly including 2^{nd} order.

2) Code RAYTRACE slices the system in small sections along the z-axis and integrates numerically the particle ray through the system.

3) Code COSY Infinity uses Differential Algebraic techniques to arbitrary orders using matrix representation for fast calculations

Solving the equations of Motion

Discussion of Diagnostic Elements

Some problems:

- Range < 1 to $> 10^{12}$ particles/s
- Interference with beam, notably at low energies
- Cost can be very high
- Signal may not represent beam properties (blind viewer spot)

Some solutions:

- Viewers, scintillators with CCD readout
- Slits (movable) Faraday cups (current readout)
- Harps, electronic readout, semi- transparent
- Film (permanent record, dosimetry)
- Wire chambers (Spectrometer)
- Faint beam $10^{12} \longrightarrow 10^3$

Diagnostics in focal plane of spectrometer

Typical in focal plane of Modern Spectrometers:

Two position sensitive Detectors: Horizontal: X1, X2 Vertical: Y1, Y2

Fast plastic scintillators: Particle identification Time-of-Flight

Measurement with IUCF K600 Spectrometer illustrates from top to bottom: focus near, downstream and upstream of X1 detector, respectively

Higher order beam aberrations

Example Octupole (S-shape in x-Θ plane

3 rays in focal plane

Schematic view of magnetic dipole, quadrupole, sextupole

Map of a magnetic quadrupole in midplane with sextupole

Example: Collins Quad

Note: Magnet is Iron/Current configuration with field as needed in ion-optical design. 2d/3d finite elements codes solving POISSON equation are well established

Fig. 4. Section through (right) and perpendicular to (left) the mid-plane of the quadrupole of spectrometer A. Lengths are in mm. The 50 mm thick mirror plates are mounted in a distance of 115 mm to the poles.

Ref. K.I. Blomqvist el al. NIM A403(1998)263

Focusing with a quadrupole doublet

POINT TO POINT FOCUS WITH DOUBLET

• Question now? ASK!

• Any topic you want to hear and I haven't talked about? Let me know!

End Lecture 1

Grand Raiden High Resolution Spectrometer

Magnetic Spectrometer Target Point Focusing Q section Grand. Focal Plane analyzer FOCUS Q-lens for Angular Dispersion Matching Intermediate Focus Grand-analyzer section Pre-analyzer Pre-analyzer FOCUS section Source Point (SP)

Beam Line/Spectrometer fully matched

Solution of first order Transport and Complete Matching

The from formation (without assuming
$$Sig = -Sig K$$
) in the
bending plane from the cyclober exit to the focal plane is given as:
 $X_{f,p.} = X_0 (S_{11} b_{11}T + Siz bzz) \rightarrow kin. defoc. equ. (1)$
 $B_0 (S_{11} b_{12}T + Siz bzz) \rightarrow kin. defoc. equ. (1)$
 $\delta_0 (S_{11} b_{12}T + Siz bzz) \rightarrow kin. defoc. equ. (1)$
 $\delta_0 (S_{11} b_{12}T + Siz bzz) \rightarrow kin. defoc. equ. (1)$
 $\delta_0 (S_{11} b_{12}T + Siz bzz) \rightarrow kin. defoc. equ. (2)$
 $B_{f,p.} = X_0 (S_{21} b_{11}T + Szz bzz) \qquad - b kin. correction (kin. diplenc)$
 $B_{f,p.} = X_0 (S_{21} b_{11}T + Szz bzz) \qquad equ. (2)$
 $\delta_0 (S_{21} b_{12}T + Szz bzz) \qquad equ. (2)$
 $\delta_0 (S_{21} b_{12}T + Szz bzz) \qquad equ. (2)$
 $\delta_0 (S_{22} + Sz_{26} K) \qquad matching$
 $\delta_{f,p.} = K \cdot B + \zeta \delta_0$
Tor details see: Y. Fujita et al., MIM B 126 (1337)274

Complete Matching

For best **Resolution** in the focal plane, minimize the coefficients of all terms in the expression of **x** f.p.

For best Angle Resolution Minimize Coefficients of do in expression of U f.p.

Note: Also the beam focus b_{12} on target is important $(b_{12} = 0 \text{ for kinem. } k = 0)$

Figure 2.2: Schematic ion trajectories under different matching conditions of a beam line

High Momentum and Angular Resolution

Spacial & Angular Dispersion Matching & Focus Condition allows

Energy Resolution: $\Delta E/E=4.3 \times 10^{-5}$, $\Delta p/p = 2.5 \times 10^{-5}$, despite beam spread: $\Delta E = 4-6 \times 10^{-4}$

Angular resolution: $\Delta Y_{scatt} = SQRT(\Delta Y_{hor}^2 + \Delta \Phi^2) = 4 - 8 \text{ msr}$

At angles close to beam (e.g. 0 deg) vert. angle component is needed \rightarrow Overfocus mode, small target dimension, because (y|y) is large, Limitation: multiple scattering in detector

Refs.: Y.Fujita et al, NIM B126(1997)274, H.Fujita et al. NIM A 469(2001)55, T.Wakasa et al, NIM A482(2002)79

The fine structure of Gamow-Teller Strength

ering (p,n) TOF measurements F established GT Giant Resonances

Now fine structure studied at RCNP in high resolution (³He,t) Reactions at 0 deg.

Note: The beam energy spread of the cyclotron is at best 150 – 200 keV.

However the spectral resolution is 35 keV due to Dispersion Matching.

0 deg: magn. separation of beam

Resolution better than beam spread

 Angle reconstructed despite 2 cm horiz. target spot, due to dispersion