The Joint Institute for Nuclear Astrophysics

An Introduction to Ion-Optics

Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005

Georg P. Berg

The Lecture Series

1st Lecture: 9/30/05, 2:00 pm: Definitions, Formalism, Examples

2nd Lecture: 10/7/05, 2:00 pm: Ion-optical elements, properties & design

3rd Lecture: 10/14/05, 2:00 pm: Real World Ion-optical Systems

4th Lecture: 12/2/05, 2:00 pm: Separator Systems

5th Lecture: 12/9/05, 2:00 pm: Demonstration of Codes (TRANSPORT, COSY, MagNet)

2nd Lecture

2nd Lecture: 10/7/05, 2:00 pm: Ion-optical elements, properties & design

- Electro-magnetic elements in ion-optical systems Dipoles, Quadrupoles, Multipoles, Wien Filters
 Combining elements, ion-optics properties
 Field measurements
- Review 1st Lecture (4)
- Overview magnetic elements (5)
- Creation of magnetic B (6 8)
- Dipole magnets (9 -11)
- Quadrupole magnets, doublet, triplet (12 16)
- Wien Filter (17)
- Field measurements (18-19)
- Outlook 3rrd Lecture: A beam line & spectrometer (20)
- Q & A

Review 1st Lecture

4

Lorentz Force:

$$\begin{aligned}
\vec{F} &= \vec{q} \vec{E} + \vec{q} \vec{v} \vec{x} \vec{B} \\
& \text{Magnetic} \\
& \text{force}
\end{aligned}$$
(1)
$$\begin{aligned}
\text{TRANSPORT of Ray X}_{0} & X_{n} &= R X_{0} \\
& R &= R_{n} R_{n-1} \dots R_{0}
\end{aligned}$$
(3)
$$R &= R_{n} R_{n-1} \dots R_{0}
\end{aligned}$$
(4)
$$\begin{aligned}
\text{TRANSPORT of } \sigma \text{ Matrix (Phase space ellipsoid)} \\
& \sigma_{1} &= R \sigma_{0} R^{T}
\end{aligned}$$
(10)
$$\end{aligned}$$

$$\begin{aligned}
\text{Beam emittance:} \qquad \varepsilon &= \sqrt{\sigma_{11} \sigma_{22} - (\sigma_{12})^{2}}
\end{aligned}$$

Taylor expansion, higher orders, solving the equation of motion, diagnostics, examples

Schematic Overview of Magnetic Elements (Iron dominated)

Iron dominated:

B field is determined by properties & shape of iron pole pieces

Required wI = Ampere-turns for desired magnet strength B_0 , g, a_3 , a_4 can be calculated formula in last column.

Coils are not shown in drawing in 1st columm

G. Schnell, Magnete, Verlag K. Thiemig, Muenchen 1973

Creation of magnetic fields using current

Current loop

I Electric current Magnetic field B produced by loop current

Helmholtz coil, Dipole

Helmholtz coil, reversed current, Quadrupole

Magnetization in Ferromagnetic material:

μΗ

В

B = magn. Induction H = magn. Field μ = magn. permeability

Creation of magnetic fields using permanent magnets

Magnet iron is **soft**: Remanence is very small when H is returned to 0 Permanent magnet material is **hard**: Large remaining magnetization B

Permanent magnets can be used to design dipole, quadrupole and other ionoptical elements. They need no current, but strength has to be changed by echanica adjustment.

Example: Dipole H-Magnet

Iron dominated Dipole Magnet with constant field in dipole gap (Good-field region).

- Soft magnet iron, B(H)
- Hollow copper conductor for high current density
- Iron magnetization saturates at about 1.7 T

Field lines in an iron-dominated Dipole magnet

Field lines of H-frame dipole

For symmetry reasons only a quarter of the full dipole is calculated & shown

↑ Good-field region

Defined by ion-optical requirement, e.g. dB/B < 10⁻⁴

The Field calculation was performed Using the finite element (FE) code MagNet (Infolytica).

Fringe field & Effective field length L_{eff}

Note:

1) The fringe field is important even in 1st order ion-optical calculations.

- 2) Rogowski profile to make L_{eff} = Pole length.
- 3) The fringe field region can be modified with field clamp or shunt.

Note: Magnet is Iron/Current configuration with field as needed in ion-optical design. 2d/3d finite elements codes solving POISSON equation are well established

Collins Quadrupole

Fig. 4. Section through (right) and perpendicular to (left) the mid-plane of the quadrupole of spectrometer A. Lengths are in mm. The **50** mm thick mirror plates are mounted in a distance of 115 mm to the poles

Ref. K.I. Blomqvist el al. NIM A403(1998)263

Forces on ions (quadrupole)

Quadrupole

Hexapole

Octopole

Fig. 9.15. Pole arrangements of magnetic quadrupoles, hexapoles, and octopoles are indicated. Also shown is a circle of radius r_0 along which the magnetic flux density is constant, and its direction varies as indicated. Finally, strings of zeros indicate lines along which B_y the y component of the magnetic flux density vanishes. These lines separate regions in which B_y is parallel or antiparallel to the y axis.

Horizontally defocusing quadrupole for ions along – z axis into the drawing plane. See Forces $\uparrow \leftarrow \downarrow \rightarrow$ in direction v x B

A focusing quadrupole is obtained by a 90° rotation around the z axis

Ion optics of a quadrupole SINGLET & DOUBLET

POINT TO POINT FOCUS WITH DOUBLET

Figure 1.9 Point-to-point focusing with a quadrupole doublet. The two trajectories shown are in the horizontal and vertical planes respectively.

Focusing with a quadrupole TRIPLET

Screen shot of TRANSPORT design calculation of **Quadrupole Triplet** upstream of St. George target. Shown are the horiz. (x) and vert. (y) envelops of the phase ellipse.

Note beam at Slit has +/- 2 mrad and at target TGT +/- 45 mrad angle opening.

This symmetical triplet 1/2F-D-1/2F corresponds to an optical lens.

Lorentz force ev x B on electrons with velocity v that constitute the current I

 $R_{\rm H}$ = Hall constant, material property

Remarks:

- Precision down to $\sim 2 \ 10^{-4}$
- Needs temperature calibration
- Probe area down to 1 mm by 1 mm
- Average signal in gradient field (good for quadrupole and fringe field measurement)

Hall Probe

Nuclear spin precesses in external field B With Larmor frequency

 $f_L = \frac{2\mu}{h} B$ (21)

 $\mu = p, d magn.$ Moment h = Planck constant

 f_L (proton)/B = 42.58 MHz/T f_L (deuteron)/B = 6.538 MHz/T

Principle of measurement:

Small (e.g. water probe), low frequency wobble coil $B + B_{\sim}$, tuneable HF field B_{\approx} (Fig. 1) with frequency f_t , observe Larmor resonance on Oscilloscope (Fig. 2). When signal a & b coincide the tuneable frequence $f_t = f_L$

- Precision $\sim 10^{-5}$
- Temperature independent
- Needs constant B in probe (5 x 5 mm) to see signal!

Schirmbild

Fig. 2

NMR Probe

Grand Raiden High Resolution Spectrometer

End Lecture 2