The Joint Institute for Nuclear Astrophysics

An Introduction to Ion-Optics

Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005

Georg P. Berg

The Lecture Series

1st Lecture: 9/30/05, 2:00 pm: Definitions, Formalism, Examples

2nd Lecture: 10/7/05, 2:00 pm: Ion-optical elements, properties & design

3rd Lecture: 10/14/05, 2:00 pm: Real World Ion-optical Systems

4th Lecture: 12/2/05, 2:00 pm: Separator Systems, Part 1

5th Lecture: 12/9/05, 2:00 pm: Separator Systems, Part 2

5th Lecture

5th Lecture: 12/2/05, 2:00 pm Separator Systems

- Electric Dipoles in Recoil Separator Dragon & EMMA
- Wien Filter in Recoil Separators
- Recoil separators ERNA and ARES for astrophysics
- A "no-field" separation method: the Wedge
- In-flight isotope separators TRIµP and A1900
- Gas-filled separators
- Astrophysics recoil separator St. George

DRAGON

Recoil Separator with Electric Dipoles

Study of astrophyscis reactions using radioactive beams:

e.g. ²¹Na(p,γ)²²Mg in inverse kinematics using a radioactiv ²¹Na beam of 4.62 MeV to study NeNa cycle

Ref. Dragon Recoil Separator Optics, The Recoil Group, 1/18/1999,TRIUMF

EMMA Recoil Separator for ISAC-II at TRIUMF

Fig. 1. Schematic view of EMMA, showing the target, quadrupole and dipole magnets, and electric dipoles. The detector box is also indicated.

B. Davids, TRIUMF & C. Davids, ANL

Ion-optics of ¹⁶O 3⁺ and 6⁺ ions

3rd order calculations using COSY Infinity

ERNA

Recoil Separator with Wien Filters

¹²C beam mainly stopped inFaraday cup between QS1 and MD

Fig. 2. Samples of ¹⁶O trajectories are shown for (a) $E = 0.70 \text{ MeV} (q_0 = 3^+, \theta_{\text{max}} = 1.9^\circ, \Delta E = 0.13 \text{ MeV})$ and (b) $E = 5.0 \text{ MeV} (q_0 = 6^+, \theta_{\text{max}} = 1.0^\circ, \Delta E = 0.44 \text{ MeV})$. The trajectories start at the jet gas-target (⁴He target density $= 1 \times 10^{18} \text{ atoms/cm}^2$) and are followed through the filtering and focusing elements of ERNA (indicated by square boxes) up to the telescope (WF = Wien filter, QS = quadrupole singlet, QD = quadrupole doublet, QT = quadrupole triplet, MD = magnetic dipole)

Study of astrophyscis reactions using radioctive beams.

Example: Hot CNO breakout reaction ${}^{19}Ne(p,\gamma){}^{20}Na$ in inverse kinematics using a radioactive ${}^{19}Ne$ beam of 10.1 MeV

Ref. M. Couder, PhD Thesis July 2004, Louvain-La-Neuve

Recoil Separator with a Wien Filter

ARES

Achromatic magnet separator

Lateral Dispersion Hagnification Mx Focusing fot First order R12 x(t) TRANSPORT R11 0 0 0 R16 x Matrix R_{µv} $\theta(t)$ R21 R22 0 0 0 R26 Angular Disp 0 y(t) 0 0 ^R33 R34 0 0 У = (2) R43 $\varphi(t)$ 0 0 RLL 0 0 φ_{o} L(t) R 51 R₅₆ R 52 0 0 1 l. **ð**(t) 80 0 0 0 0 0

Solution of Exercise 4

$$\begin{aligned} \mathbf{x}_{2} &= \text{ implify Field in } \mathbf{x}_{1} \end{aligned}$$

$$\begin{aligned} \mathbf{x}_{I} &= A_{11} \ \mathbf{x}_{0} + A_{12} \ \theta_{0} + A_{16} \ \delta_{0} & |A_{12} = 0 \\ &= A_{11} \ \mathbf{x}_{0} + A_{16} \ \delta_{0} & \textbf{(33)} \end{aligned}$$

$$\begin{aligned} \mathbf{x}_{F} &= B_{11} \ \mathbf{x}_{I} + B_{12} \ \theta_{I} + B_{16} \ \delta_{0} & |B_{12} = 0 \\ &= B_{11} \ \mathbf{x}_{I} + B_{16} \ \delta_{0} & |\text{ substitute } \mathbf{x}_{I} \ \text{ using (33)} \end{aligned}$$

$$\begin{aligned} &= B_{11} \ (A_{11} \ \mathbf{x}_{0} + A_{16} \ \delta_{0}) + B_{16} \ \delta_{0} \\ &= B_{11} \ A_{11} \ \mathbf{x}_{0} + (B_{11} \ A_{16} + B_{16} \) \ \delta_{0} \end{aligned}$$
Note: The

Condition for achromaticity: $A_{16} = -B_{16}/B_{11}$

Note: This is the Dispersion Matching condition for C = T = 1

Achromatic magnet separator

12

 $B\rho = p/q$ selection $\Delta p/p_0$ range selection

Λ

for similar velocities v m/q selection,

for fully stripped ions A/Z selection

A

0.1 mm **AE Si-detector** 20 mm diameter

Example: Production of ²¹Na via H(²¹Ne,n)²¹Na with ²¹Ne⁷⁺ beam at 43MeV/nucleon using the TRIµP Separator, KVI Groningen Ions after target fully stripped e.g. ²¹Ne¹⁰⁺ !

Λ

²¹Ne beam with $\approx 10^{10}$ ions/s with $B\rho(^{21}Ne)/B\rho(^{21}Na) \cong 1.09$ is all but eliminated by a slit (SH2) in front of plane I

Note:

B

Ions with $A/Z \sim 2$ are not separated !

Achromatic magnet separator with Wedge

Figure from Experimental Techniques at NSCL, MSU, Th. Baumann, 8/2/2002

Effect of "Wedge" \Rightarrow

Note:

For large dp/p) the degrader should be Wedge-shaped to restore achromaticity effected by degrader with constant thickness

TRIµP an achromatic secondary beam separator

A1900 MSU/NSCL Fragment Separator

Overview of the Fragment Separation Technique

16

Gas-filled separators Concept

PROBLEM: After target, a distribution of several charge states q exists for low E or large Z, with Bp range typically larger than acceptance causing transmission losses.

REMEDY: gas-filled separator

Rays in a magn. dipole field without and with gas-filling

Measured spectra as function of gas pressure (e.g. He, Ar)

M. Paul et al. NIM A 277 (1989) 418

A "long" achromatic separator system is not suitable for a gas-filled separator that should be "short" to reduce statistical E spread and have "large dispersion"

\leq	ray	x [mm]	Θ [mrad]	$\Delta E/E$ [%]	y [mm]	Φ [mrad]
	1	0	30	4.0	-1.5	30
	2	2	30	0	0	30
	3	0	30	0	1.5	0
	4	0	0	4.0	0	-30
	5	0	30	-4.0	1.5	-30
	6	2	0	0		
	7	0	-30	4.0		
	8	0	-30	0		
	9	0	-30	-4.0		

Therefore:

The TRIµP separator was Designed to be able operate with Section A as beam line & Section B as short gas-filled separator with large dispersion

Charge state distribution in TRIµP separator with gas-filling

RAYTRACE with gas-filling

Modified RAYTRACE code used to calculate the separation of beam to demonstrate particle and beam separation in the TRIµP separator in Gas-Filled Mode

Recoil Separator St. George

Study of (α, γ) and (p, γ) of astrophysics importance, for A < \approx 40 targets, emphasis on low energies, i.e. very small cross sections, max. energy given by KN

An overview of reaction result in the following DESIGN PARAMETERS

Maximum magnetic rigidity Bρ:0.45 TmMinimum magnetic rigidity Bρ:0.10 TmMomentum acceptance dp:+/- 3.7 %Angle acceptance, horiz & vert.: +/- 40 mrad

Further design considerations:

- Two phase construction
- Charge selection by Bp analysis (typical: 50% Transmission)
- High mass resolution ($\Delta m/m \cong 200$, 1st phase with 2 Wien Filters)
- Higher mass resolution ($\Delta m/m \cong 600$) 2nd phase
- Wien Filters for mass resolution (energy too low for "Wedge" method

Schematic Floorplan St. George

Phase 1

22

Horizontal ion-optics St. George

Vertical ion-optics St. George

End Lecture 5

TRIµP ion-optics 1st & 2nd Section

rav	x [mm]	Θ [mrad]	$\Delta E/E$ [%]
1	0	30	2.2
2	0	30	0
3	0	30	-2.2
4	0	25	3.2
5	0	16	4.0
6	0	0	4.4
7	2	0	0
8	0	0	-4.4
9	0	-30	2.2
10	0	-30	0
11	-2	-30	0
12	0	-30	-2.2

y [mm]	Φ [mrad]
-1	30
0	30
1	30
1	0
0	-30
1	-30

26